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Abstract— This paper presents an enhanced algorithm for
automatic segmentation of superficial white matter (SWM)
bundles from probabilistic dMRI tractography datasets, based
on a multi-subject bundle atlas. Previous segmentation methods
use the maximum Euclidean distance between corresponding
points of the subject fibers and the atlas centroids. However,
this scheme might include noisy fibers. Here, we propose a
three step approach to discard noisy fibers improving the
identification of fibers. The first step applies a fiber clustering
and the segmentation is performed between the centroids of the
clusters and the atlas centroids. This step removes outliers and
enables a better identification of fibers with similar shapes. The
second step applies a fiber filter based on two different fiber
similarities. One is the Symmetrized Segment-Path Distance
(SSPD) over 2D ISOMAP and the other is an adapted version
of SSPD for 3D space. The last step eliminates noisy fibers
by removing those that connect regions that are far from the
main atlas bundle connections. We perform an experimental
evaluation using ten subjects of the Human Connectome (HCP)
database. The evaluation only considers the bundles connecting
precentral and postcentral gyri, with a total of seven bundles
per hemisphere. For comparison, the bundles of the ten subjects
were manually segmented. Bundles segmented with our method
were evaluated in terms of similarity to manually segmented
bundles and the final number of fibers. The results show
that our approach obtains bundles with a higher similarity
score than the state-of-the-art method and maintains a similar
number of fibers.

Clinical relevance— Many brain pathologies or disorders can
occur in specific regions of the SWM, automatic segmentation
of reliable SWM bundles would help applications to clinical
research.

I. INTRODUCTION
Diffusion-weigthed imaging (dMRI) is a non-invasive

technique able to characterize water molecules diffusion,
enabling the study of the microstructure of brain white
matter (WM) in vivo [1]. Through the use of tractography
algorithms, the main WM pathways can be reconstructed in
the form of 3D streamlines, also called fibers. Tractography
datasets, calculated from methods such as constrained spher-
ical deconvolution, coupled with probabilistic streamlines
tracking algorithms, provide a better delineation of white
matter tracts than deterministic approaches [2]. However,
these datasets present a higher complexity and more false
positives. Hence, some analysis algorithms, such as WM
bundle segmentation, need to be adapted. This is specially
important for short association connections, located in the
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superficial white matter (SWM), right under the cortex, con-
necting near or adjacent gyri. These bundles are characterized
by their small size, high variability among subjects and a U-
shaped form [1].

Automatic segmentation methods extract WM bundles,
to perform clinical studies and comparison between popu-
lations. The algorithm proposed in [3] enables the bundle
extraction on massive tractography datasets based on a multi-
subject bundle atlas. Also, recent optimizations [4], [5] have
allowed a fast classification of white matter fibers. However,
the algorithms need to improve the identification of the U-
shaped morphology of SWM bundles and filter out spurious
fibers. We propose a processing pipeline, based on different
filters that successfully improve the segmentation of short
association bundles in probabilistic tractography datasets.
Preliminary results are shown for precentral-postcentral con-
nections (PrC-Poc) [6].

II. MATERIALS AND METHODS

A. Database and tractography datasets

We used ten healthy subjects from the Human Connectome
Project (HCP) database, containing multi-shell dMRI data
acquired on a Siemens Skyra scanner with customized pro-
tocol [7]. The dMRI data was collected over three b-values
(1000, 2000, 3000 s/mm2), with an isotropic voxel of 1.25
mm. Probabilistic tractographies of 3M streamlines were
calculated using MRtrix software [2], based on spherical de-
convolution model, Anatomically-Constrained Tractography
and a Spherical-deconvolution Informed Filtering of Trac-
tograms. Finally, the fibers were non-linearly transformed to
MNI space and resampled with 21 equidistant points.

B. PrC-Poc bundle atlas

We used a new atlas of PrC-Poc connections [6], based on
probabilistic tractography over HCP data. It contains seven
bundles per hemisphere, connecting the brain precentral-
postcentral regions, as seen in Fig. 1. These bundle models
were constructed from 100 subjects of the HCP database,
after the application of several steps, including intra- and
inter-subject fiber clustering. These fascicles present higher
coverage than previous atlases, enabling a more detailed
study of PrC-Poc connections.

C. Automatic segmentation of WM bundles

The segmentation algorithm [4], [5] uses the maximum
Euclidean distance (dME) to label subject streamlines to
the closest atlas bundle, provided that the distance to this
bundle is lower than a predefined threshold. It assumes
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Fig. 1: SWM bundles connecting the precentral and post-
central regions [6]. Bundles are in different colors. A label
indicates the hemisphere (R or L), and a correlative number:
(A) right hemisphere and (B) left hemisphere bundles.

that fibers are resampled with N equidistant points. The
Euclidean distance dE between N-point subject streamline
S and centroid atlas C is computed using Eq. 1, where Si

and Ci are corresponding 3D points.

dE(Si,Ci) = ‖(Si − Ci)‖ (1)

Then, dME is computed as Eq. 2:

dME(S,C)=min(max
i

(dE(Si,Ci)),max
i

(dE(Si,CN−i)))

(2)
A penalization term TN is added to penalize the difference

in length between streamlines (Eq. 3):

TN =

(
abs(ls − lc)

max(ls,lc)
+ 1

)2

− 1 (3)

where ls and lc are the lengths of subject streamline S and
atlas centroid C respectively. Finally, the penalized Euclidean
distance dNE is computed using Eq. 4 as:

dNE(S,C) = dME(S,C) + TN (4)

D. Enhanced segmentation pipeline for SWM bundles

We propose a new pipeline based on three main steps,
that identify fibers with a high probability to belong to the
bundle, while filtering out fibers that do not follow the main
U-shape morphology of the bundle model.

1) Intra-subject fiber clustering: First, a fiber clustering is
applied to the fibers and the segmentation is performed
based on the cluster centroids. This step removes
outliers and enables a better identification of fibers.

2) Cluster filtering: For each segmented cluster, a filtering
based on fiber similarity is applied. Two methods were
tested: i) filtering based on Symmetrized Segment-Path
Distance (SSPD) over 2D ISOMAP, and ii) filtering
based on an adapted version of SSPD for 3D space.

3) Filtering of fibers based on connectivity patterns: Fi-
nally, to eliminate noisy fibers, we remove the fibers
connecting regions that are far from the main atlas
bundle connections.

In the following, we describe the three steps.

Fig. 2: Segmentation of cluster centroids: (A) an arbitrary
cluster (blue) and his centroid (red) that corresponds to the
mean streamline of the cluster, (B) centroids segmented for
bundle R 0, (C) atlas bundle R 0, (D) bundle R 0 obtained
using the original segmentation method and (E) bundle R 0
after replacing each centroid in (B) with its cluster, clusters
are shown with different colors. The same threshold was used
for both segmentations.

1) Intra-subject fiber clustering: Before applying the seg-
mentation, we use a fiber clustering algorithm (FFClust)
to identify compact and homogeneous clusters [8]. Briefly,
FFClust proceeds in four steps: (1) builds point clusters,
(2) generates preliminary streamline clusters grouping fibers
with common point clusters, (3) reassign small preliminary
clusters and (4) merges candidate streamline clusters. This
method provides outlier removal and a better disentangle-
ment’s of the fibers. The algorithm retrieves two datasets:
(1) the fiber clusters, and (2) the cluster centroids (Fig. 2-
A). The automatic segmentation algorithm is applied to the
centroids of a subject, to label them according to the atlas
bundles and predefined thresholds. This results in segmented
fascicles made of cluster centroids. Segmented fiber bundles
are obtained by replacing each centroid by its corresponding
cluster fibers (Fig. 2-B,E). This processing obtains bundles
with fibers that otherwise would have been discarded due
to the predefined threshold, i. e., makes the algorithm less
sensitive to the threshold.

2) Cluster filtering: Even though the clustering obtains
compact clusters, a filtering is required to discard noisy fibers
in each segmented cluster, before fusing them to the final
bundles. Two methods were tested: Symmetrized Segment-
Path Distance (SSPD) over 2D ISOMAP of fibers, and
SSPD distance between fibers for 3D space. The ISOMAP
algorithm is a nonlinear dimensionality reduction method,
based on the geodesic distance between all pair of points,
preserving the intrinsic geometry of the data [9].

i) Cluster filtering based on Symmetrized Segment-Path
Distance (SSPD) over 2D ISOMAP: The SSPD [10] is
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Fig. 3: ISOMAP of clusters processing: (A) ISOMAP of
an arbitrary cluster, streamlines with a higher sum of SSPD
distances to every other streamline are displayed in yellow,
(B) ISOMAP after discarding the 10% of streamlines with
the highest trajectory dissimilarity, (C) the same cluster but
in 3D space, with the discarded fibers in orange and (D) final
cluster after the processing.

a shape based distance useful for regrouping 2D trajecto-
ries with similar shape and length and is less affected by
noise. This distance is available in the traj-dist package
(https://github.com/bguillouet/traj-dist).

The Segment-Path Distance from n1-points trajectory T 1

to n2-points trajectory T 2 is defined as:

DSPD(T 1,T 2) =
1

n1

n1∑
i1=1

Dpt(p
1
i1 ,T

2) (5)

where, pik corresponds to the kth location of T i, and Dpt

distance from a 2D point p to a trajectory T is the minimun
of the distances between this point and all segments s that
compose T .

Then, SSPD is computed as:

DSSPD(T 1,T 2) =
DSPD(T 1,T 2) +DSPD(T 2,T 1)

2
(6)

Before we replace each centroid by the corresponding
cluster fibers, we compute an ISOMAP of each streamline
in a cluster. This non-linear dimensional reduction takes
the fibers to a 2D plane. For each cluster a streamline
distance matrix is calculated for all the streamlines in the
cluster, based on DSSPD distance, applied to the 2D fiber
coordinates obtained from the 2D ISOMAP. Fibers with the
highest sum of SSPD distances are more dissimilar and are
candidates to being discarded. Fig. 3 shows and example of
filtering, discarding 10% of fibers with the highest sum of
SSPD distances.

The final filtering threshold was selected using an heuristic
approach, where a value of 50% of the most dissimilar fibers
was found to be adequate for all the bundles. Fig. 4-A,B
shows and example of filtering with SSPD distance over 2D
fiber ISOMAP.

Fig. 4: Filtering of noisy fibers within a cluster: (A) An
arbitrary cluster, (B) the cluster after ISOMAP processing
(threshold of 50%), (C) the cluster in (A) after filtering based
on SSPD3D.

Fig. 5: Filtering based on fiber connectivity patterns: (A)
Atlas bundle L 3 (in pink), and streamlines with inconsistent
endpoints of a segmented bundle (in green); endpoints are
highlighted. Green fibers are likely to be discarded using
the dEND distance, (B) Segmented bundle (in blue) after
discarding the 20% of the streamlines with the highest sum of
dEND distance to the atlas streamlines, and the atlas bundle
(in pink), (C) Discarded fibers with erratic connectivity
patterns (in green), and the atlas bundle (in pink).

ii) Cluster filtering based on SSPD distance in 3D space:
Furthermore, we modified the DSSPD distance to work
in the 3D space. In this case, instead of using the 2D
coordinates from the ISOMAP of a cluster, we calculated the
distance matrix between all the fibers in the cluster directly
using the 3D coordinates, based on the 3D SSPD distance
(SSPD3D). After testing, we discarded the 40% of fibers
with highest sum of 3D SSPD distances (Fig. 4-C).

Finally, after this step, for each bundle, we discard small
clusters, that are mainly noise, and replace the remaining
centroids with their corresponding clusters. Due to the rig-
orous criteria employed, we augmented the threshold of all
bundles by 2.0 mm.

3) Filtering of fibers based on connectivity patterns: Then
we focused on the connectivity patterns of the segmented
bundles, instead of the streamlines shape. Endpoints of
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two fibers in a bundle must present the same pattern of
anatomical connectivity [11]. To compare the endpoints of
subject bundle streamline Si and corresponding atlas bundle
centroid Cj , we used the metric proposed in [11]:

dEND(Si,Cj) =
1
2 (min(

∥∥∥si1−cj1∥∥∥
2
,
∥∥∥si1−cjnj

∥∥∥
2
)

+min(
∥∥∥sini
−cj1

∥∥∥
2
,
∥∥∥sini
−cjnj

∥∥∥
2
))

(7)

where si1, sini
are the endpoints of subject streamline Si and

cj1, cjnj
are the endpoints of atlas centroid Cj .

Next, for each bundle, a distance matrix is calculated based
on the distance dEND, between all the bundle fibers and the
centroids of the corresponding atlas bundle. Fig. 5 shows an
example for bundle L 3. In this test, we discarded 20% of
fibers with the highest sum of dEND distance to the bundle
atlas. For the final evaluation, by using an heuristic approach,
we selected the optimal discarding threshold. It was fixed to
a 60% of fibers with the highest sum of distances.

E. Manual segmentation

To evaluate the proposed method and compare it with
Vázquez et al. algorithm [5], we performed a semi-automatic
segmentation (called manual segmentation) of the 14 bundles
in the 10 subjects, based on manually selected parameters for
each bundle. We first applied a semi-automatic delineation
of the regions connected by each atlas bundle. Then, for
each bundle, we selected the fibers connecting the two corre-
sponding atlas bundle regions. Finally, the noisy fibers from
each bundle where filtered out using a cluster confidence
index [12]. First, for each atlas bundle, we intersected its
streamline endpoints with the voxels of an image in MNI
space, to create a connection density image for the two
connecting regions, one in the precentral gyrus and the other
in the postcentral gyrus. Next, for each bundle, we created a
mask with a different label for each region, using an adapted
threshold for each bundle.

Once, the atlas bundle ROI masks were created, the fiber
extremities of the tractography datasets were intersected to
obtain the segmented bundles for the 10 subjects. Next, to
filter out anatomically implausible fibers, we used dipy to
calculate the cluster confidence index as a scoring method
[12]. This metric compares the pathway of each trajectory in
a cluster and scores each fiber by considering its similarity
to the other fibers. Streamlines with the lowest scores were
discarded. The score was manually selected for each bundle.

F. Bundle similarity measure

We used the manually segmented bundles as our ground-
truth to compare the segmentation algorithm proposed by
Vázquez et al.[5] (original segmentation) with the enhanced
segmentation algorithm. For each bundle, we calculated a
distance matrix based on distance dME , between all the fibers
segmented by a method and the fibers manually segmented.
Then, the mean dME distance was calculated for each
bundle, and averaged for the ten subjects.

We used predetermined thresholds, and the enhanced
segmentation using SSPD distance over the 2D ISOMAP,

Fig. 6: Average of Mean dME of PrC-PoC bundles from the
left hemisphere for 10 subjects of the HCP database.

Fig. 7: Mean number of segmented fibers (mNF) for each
bundle of the left hemisphere. In solid color are displayed
the mNF with dME < 15mm to the centroid of the bundle,
while in white are displayed the mNF with dME ≥ 15mm
to the centroid of the bundle,.

and SSPD3D distance, both with augmented thresholds (+2.0
mm). We also included a comparison with the original
segmentation using thresholds augmented by 2.0 mm.

III. RESULTS

Fig. 6 shows the average mean dME distance between
bundles obtained by the evaluated methods and the manual
segmentation, for the seven PrC-PoC bundles of the left
hemisphere. All the mean distances dME were found to be
bigger for the original segmentation method except for one
bundle L 6, which got a lower mean of dME distance for the
original method. This bundle has an irregular shape. We can
observe that, in general, the proposed methods (SSPD3D and
SSPD+ISOMAP), obtain slightly smaller distances. On the
other hand, the original method with the threshold augmented
in 2.0 mm gets higher distances.
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Fig 7 shows the mean number of fibers of the segmented
bundles for all the methods. Note that the number of fibers
increases dramatically for the original method with the
augmented threshold. The enhanced method using either
SSPD3D or SSPD+ISOMAP processing within clusters, de-
tects a non negligible number of reliable fibers, filtering
the ones with the most dissimilar connectivity patterns and
trajectory path. Our method, composed of three steps gets
a number of segmented fibers similar to the manually seg-
mented fibers for almost all the bundles, showing that is a
better approach for selecting SWM fibers, than the solely use
of a predefined threshold, as seen in Fig. 7.

Furthermore, augmentation of thresholds using the original
segmentation method adds mostly spurious fibers, by con-
trast, our method using either SSPD+ISOMAP or SSPD3D
enables the augmentation of thresholds while keeping a low
mean dME and the main U-shaped fibers, as seen in Fig. 8.

Fig. 8: Column (A): manual segmented bundles, column
(B): bundles obtained with SSPD3D processing, column (C):
bundles obtained with SSPD+ISOMAP processing, column
(D): original segmentation with predefined threshold and
column (E): original segmentation with augmented threshold.
First row: bundle L 0, second row: bundle L 5 and third row:
bundle R 1.

IV. CONCLUSIONS

We have presented a novel method for the segmentation
of reliable SWM bundles. The processing pipeline accom-
plishes a better disentangling of the SWM connections than
its predecessor using either cluster’s ISOMAP processing
with SSPD or SSPD3D distance metric, and the exploit of
endpoints between a segmented bundle and its corresponding
atlas bundle. Furthermore, we have shown the impact of
trajectory clustering metric in the segmentation of reliable
SWM bundles. The intra-subject clustering is good enough
to form clusters of fibers with overall similar characteristics,
however a higher level of granularity within a cluster is
required to form reliable SWM bundles, in particular for
probabilistic tractography. Results are very promising even
though very preliminary and the method was only tested on
PrC-PoC connections. Other limitations are the low number

of subjects and the heuristic selection of parameters. Future
work will extend the analysis to the whole brain and a larger
population, with a deeper analysis of parameter tuning and
sensitivity. Also, an adapted selection of the segmentation
threshold and the amount of fibers to discard using both,
dSSPD and dEND distances, can be implemented, to define
optimal parameters for each bundle.
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[11] G. Bertò, D. Bullock, P. Astolfi, S. Hayashi, L. Zigiotto, L. An-
nicchiarico, F. Corsini, A. D. Benedictis, S. Sarubbo, F. Pestilli,
P. Avesani, and E. Olivetti, “Classifyber, a robust streamline-based
linear classifier for white matter bundle segmentation,” NeuroImage,
vol. 224, p. 117402, jan 2021.

[12] K. M. Jordan, B. Amirbekian, A. Keshavan, and R. G. Henry, “Cluster
confidence index: A streamline-wise pathway reproducibility metric
for diffusion-weighted MRI tractography,” Journal of Neuroimaging,
vol. 28, no. 1, pp. 64–69, sep 2017.

3658


