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Abstract— Cardiac cine-MRI is one of the most important di-
agnostic tools for characterizing heart-related pathologies. This
imaging technique allows clinicians to assess the morphology
and physiology of the heart during the cardiac cycle. Nonethe-
less, the analysis on cardiac cine-MRI is highly dependent
on the observer expertise and a high inter-reader variability
is frequently observed. Alternatively, the ejection fraction, a
quantitative heart dynamic measure, is used to identify potential
cardiac diseases. Unfortunately, this type of measurement is
insufficient to distinguish among different cardiac pathologies.
This quantification does not exploit all the heart functional
information conveyed by cine-MRI sequences. Automatic image
analysis might help to identify visual patterns associated with
cardiac diseases in the cine-MRI sequences and highlight poten-
tial biomarkers. This paper introduces a conditional generative
adversarial network that learns a mapping between the latent
space and a generated cine-MRI data distribution involving
information from five different cardiac pathologies. This net
is guided from the left ventricle segmentation and the velocity
field that is computed as prior information to focus on the deep
representation of salient cardiac patterns. Once the deep neural
networks are trained, a set of validation cine-MRI slices is
represented in the embedding space. The associated embedding
descriptor, in the latent space, is found by minimizing a
reconstruction error in the generator output. We evaluated the
obtained embedded representation as a disease marker by using
different classification models in 16000 pathological cine-MRI
slices. The representation retrieved by using the best conditional
generative model configuration was used on the classifier models
yielding an average accuracy of 90.04% and an average F1-score
of 89.97% in the classification task.

Clinical relevance— Construction of a topological embedding
space, from generative representation, that fully exploits hidden
relationships of cine-MRI and represent cardiac diseases.

I. INTRODUCTION
Heart disease is the leading cause of death around the

world, some studies estimate that it will cause more than
23 million deaths in 2030 [1]. Cardiac cine magnetic reso-
nance imaging (cine-MRI) allows radiologists to assess the
morphology and ventricular function of the patient’s heart.
Nonetheless, such analysis is based on the training and
expertise of the radiologists, and therefore a high inter-reader
variability is frequently observed. Besides, some quantitative
metrics are based on the global cardiac index that loses
valuable Spatio-temporal information captured in volumetric
cine-MRI sequences.

Recently, the Computer-Assisted Decision Support Sys-
tems (CADS) in cardiac cine-MRI imaging are mainly ded-
icated to segment ventricles to compute hemodynamic met-
rics, such as heart rate variability (HRV) or ejection fraction
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(EF) [2], [3]. These approaches are however limited to use
already known pathological patterns on cine-MRI without
providing new information to support diagnosis decisions.
Moreover, these cardiac measurements can be sensitive to
cardiac disease variability. For instance, the calculation of
these hemodynamic patterns is dependent on proper ventricle
segmentation and such analysis is limited to the end-diastole
(ED) and end-systole (ES) phases. In consequence, most of
the Spatio-temporal information available in the cine-MRI
sequences is not currently used by state-of-the-art CADS.

Other strategies have focused on automatic heart disease
classification. For instance, Zhan et al. computed several
statistics related to the shape and textural features, and
then sequential forward feature selection was used to im-
prove the classification process [4]. Cetin et al. trained
deep learning models to segment regions of the heart on
MRI scans throughout the cardiac cycle [5]. Nonetheless,
these supervised strategies do not exploit the Spatio-temporal
information available in the cine-MRI sequences. Generative
adversarial networks (GANs) promise to find uncovered
descriptors and potentially new biomarkers associated with
structural and dynamic changes in particular pathologies.
Despite this potential, in cine-MRI, such generative archi-
tecture has been mainly adopted in the artificial generation
of cardiac sequences[6], [7]. For instance, in [8] progres-
sive sequential causal GANs (PSCGAN) is proposed to
simultaneously synthesize and LGE-equivalent image and
the segment diagnosis-related tissues. Other works on GANs
are used to avoid problems of anonymity and privacy of the
data [9]. Realistic GAN-generated images are used instead
of real images to avoid sharing clinical imaging data [10],
[11].

This work presents a strategy based on a conditional GAN
architecture, conditioned by cardiac prior information, to
recover embedding patterns and to differentiate among five
different cardiac pathologies. Prior information related to
ventricle shape and local velocity fields is used as conditional
input fed into the GAN to find a suitable representation
associated with cardiac conditions. As a result, meaningful
mappings and embeddings are learned to represent cine-
MRI data distribution This representation is discriminative
among the different cardiac conditions, as shown by low-
dimensional projections of the embeddings space. Moreover,
a quantitative evaluation of the embedding was also carried
out via classical machine learning algorithms. The classifiers
successfully discriminated among five different heart cardiac
conditions using the embedding representation with an ac-
curacy of 90.04% with the best configuration.
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II. PROPOSED APPROACH

Figure 1 summarizes a schematic diagram depicting the
main composing blocks of the proposed approach and the
proposed evaluation. First, a generative representation is
trained conditioned by the shape and motion priors (sub-
section II.A). From such representation, an embedding cod-
ing vector to compactly describe observed conditions on
cine-MRI slices is recovered (subsection II.C). The whole
computed embedding are mapped into a topological space
to cluster samples and classify vectors, according to heart
conditions.

Fig. 1. Pipeline of the proposed method.(a) A conditioned GAN archi-
tecture learns a mapping between embeddings and generated/real cine-MRI
images (b) Test cine-MRI images are represented by embedding vectors. (c)
The embedding domain shows clear separation among five different cardiac
conditions. (d) Evaluation via classifiers fed by the embedded representation

A. Deep conditioned and generative representation

This work uses the Multiple Conditional Input GAN
(MCIGAN) architecture [12]. This network restricts the
generative samples using multiple input conditions while
avoiding artifact generation and mode collapse (see architec-
ture illustration in Figure 2). As a typical GAN, this net is
composed by two main deep neural networks: A generator
and a discriminator. In the MCIGAN, the generator is fed
with a random vector in the latent space, the associated
heart pathology and vector information related with prior
structural or motion information, embedded as a constraint.
The discriminator is trained to distinguish if the input cine-
MRI sequence was synthesized by the generator or if it is
real. The discriminator outputs a probability of the cine-MRI
sequence being real, and also a set of probabilities related to
the different cardiac pathology classes.

The GAN training is carried out by using the Wasserstein
cost function LW , as:

LW = Ex̃∼Pr [D
′(x)]− Ex̃∼Pg [D′(x̃)] (1)

where Ex∼Pr is the expected value over all instances of
the real data distribution Pr given the discriminator D′(x).
Contrary, the term Ex̃∼Pg counts probability to belong to
generated images. An auxiliary loss function Laux is then

Fig. 2. Architecture of the generative adversarial network which has
multiple inputs in order to evaluate the resulting distributions of different
heart distributions.

introduced to include heart condition priors. In such case
a typical measure of squared difference between the real
and false pathologies c is fixed to obtain a “label class
penalty”. To further regularize the training process, a feature
consistency lost Lcons is herein introduced by operating
Laplacian matrices inputs dedicated to retain local details
and preserve local structure of input images. Then a general
minimization is used by integrating the whole defined losses,
as:

min
G

LW + Laux + λconsLcons (2)

The structural and dynamic heart information is captured
as prior information as follows:

1) Left ventricle shape: A U-Net was previously trained
to segment the left ventricle in the ED and ES [13]. The
motivation for using this masks is to encourage the learned
representation in the GAN to focus on the heart morphology,
which is a demonstrated biomarker of many cardiac condi-
tions [14]. The segmentations were propagated throughout
the entire cardiac cycle achieving a coherent and a dense
representation of the temporal ventricle shape.

2) Motion flow patterns: The heart morpho-physiology
is also a fundamental bio-marker for the characterization of
abnormal or pathological conditions [15]. This information is
directly related to the temporal deformation of the ventricles
and their synchronized ability to pump specific volumes of
blood. In this work, a dense optical flow algorithm was used
at pixel scale [16]. The captured outgoing motions were
associated with strong displacements between consecutive t
and t + 1 slices. This process results in a representation of
the velocity of the cardiac chambers.

B. Embedding computation

Once the generative learned representation is fixed, com-
puting the embedded vector for a new cine-MRI sequence
consists on mapping it to the embedding domain. To obtain
such embedding vector, an iterative process is carried out
to minimize a residual loss function [17]. Initially, the
method computes the loss between a target image xn and
an initial synthetic image G(z0) for a random vector z0.
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The loss is minimized via back-propagation, with a total
of κ iteration steps, by providing the gradients to update
the latent vector coefficients (z0 → z1 → ... → zκ). The
embedding vector zκ generates a synthetic image Gzκ close
enough to represent the image xn. The loss function herein
implemented is described as LR(zγ) =

∑
|xn−G(zγ)| [18].

C. Data

The proposed methodology was validated over the public
ACDC dataset [19]. A total of 100 cine-MRI volumes
(around of 16000 slices), together with the associated seg-
mentation were herein used. Apical slices (around 30% of
each volume) were discarded in this study because the poor
information related with cardiac information. The total of
cine-MRI is classified into five cardiac conditions: myocar-
dial infarction (MINF), Dilated cardiomyopathy (DCM),
Hypertrophic cardiomyopathy (HCM), Abnormal right ven-
tricle (RV), and control heart volumes (NOR). For the
statistical validation, the total set was split on 80% for
the GAN training, and 20% for validation and latent space
generation.

D. Experimental setup

The generative representation was set to receive and gen-
erate cine-MRI slices, scaled with spatial size of 64×64. The
integrated input was configured as follows: 1) the embedding
prior (shape and motion) coded as images of 64 × 64, 2)
a random vector of 512 dimensions and 3) the pathology
information encoded in a vector of three dimensions. In
the training stage a total set of 12000 slices was included.
Training mini-batches were set to 32. An early stopping
criteria was used: if there is no difference in the training
loss on consecutive iterations, the training is halted. Also, the
maximum set of iteration was set to 1× 107. The parameter
λcons was fixed to 100. The rest of hyper-parameters were
established following the same configuration that MCIGAN.

A topological low-dimensional embedding space was ob-
tained with the UMAP algorithm [20]. The algorithm was
applied on the validation set using the hamming distance.
A quantitative validation was also carried out. Regarding
the capability to separate among different cardiac diseases,
three machine learning algorithms were used on the original
embedding representation. The classification strategies here
in selected were the K-Nearest Neighbors (KNN) (with
K = 13), the Random Forest (RF) Classifier (115 trees), and
the Support Vector Machine (SVM) (with RBF kernel). The
whole models were adjusted with a Bayesian optimization
process.

III. EVALUATION AND RESULTS

The capability of the proposed strategy to encode em-
bedding vectors representing the cardiac conditions was
validated on the low-dimensional space, as well as in the
classification task. The resultant embedding space was ex-
plored by using a set of embedding vectors generated from
different priors. The selected embeddings were projected into
a low dimensional space, using the UMAP strategy. Three

different projections were obtained by using only the shape
(segmentation), only the local movement (optical flow), and
both the shape and motion prior. Figure 3 summarizes the
three topological representation which properly separate the
embedding vectors according to the different priors. The
embedding space built from only prior motion informa-
tion has some overlapping among the cardiac conditions.
In contrast the projection using both priors shows clear
separation among the cardiac conditions, which points to a
discriminative representation of the cine-MRI slices.

A second experiment was carried out to quantitatively
validate the capability of obtained vectors to describe heart
pathologies. The original embedding vectors (with size of
512) were used to train machine learning classifiers and per-
form a classification task to separate the cardiac conditions.
As done in the previous experiment, the classification was
also carried out following three different prior configura-
tions. Table I summarizes the results of three configurations
following different accuracy metrics. It should be noted
that in general the generative representation could be useful
as biomarkers to differentiate among cardiac pathologies.
In average, the three representation achieved an average
precision of 0.8644, sensitivity of 0.8622 and a F1-score
of 0.8633. Remarkably, the best performance was achieved
by the generative model that include both: shape and motion
prior information. Hence, embedding vectors seem to encode
morphological and physiological information of particular
cine-MRI sequences. Also, although there exist some dif-
ferences between the classifiers performance, the results are
quite similar.

TABLE I
CLASSIFICATION PERFORMANCE USING K-NEAREST

NEIGHBOURS(KNN), RANDOM FOREST(RF) AND SUPPORT VECTOR

MACHINE(SVM). THE NEXT METRICS WERE USED: PREC: PRECISION,
SENS: SENSITIVITY, SPEC: SPECIFICITY, F1-SC: F1-SCORE.

Heart Condition & Segm Heart Condition & Flux Heart Condition & Segm Flux
Prec Sens Spec F1-Sc Prec Sens Spec F1-Sc Prec Sens Spec F1-Sc

KNN 0.89
±0.05

0.89
±0.03

0.97
±0.01

0.89
±0.03

0.83
±0.05

0.83
±0.01

0.95
±0.01

0.83
±0.06

0.90
±0.03

0.89
±0.03

0.97
±0.01

0.9
±0.01

RF 0.86
±0.06

0.86
±0.03

0.96
±0.01

0.86
±0.04

0.83
±0.04

0.83
±0.08

0.95
±0.01

0.83
±0.05

0.88
±0.04

0.88
±0.02

0.97
±0.01

0.88
±0.01

SVM 0.88
±0.06

0.88
±0.04

0.97
±0.01

0.88
±0.04

0.82
±0.05

0.81
±0.11

0.95
±0.01

0.81
±0.06

0.89
±0.02

0.89
±0.02

0.97
±0.00

0.89
±0.01

Finally, a more detailed analysis of the per-condition
classification of the best generative representation, i.e., in-
cluding shape and motion information, is also shown on
Figure 4. A confusion matrix was computed for the three
different classifiers. As expected, the embedding vectors that
represents cine-MRI sequences defined as normal, achieve
the best classification rate w.r.t the other cardiac conditions.
However, the other classes have a good performance, except
for the DCM pathology. This fact may be attributed to
the limitation of the generative model to reproduce dilated
cardiac conditions.

IV. CONCLUDING REMARKS

This paper presents a generative strategy applied to cine-
MRI sequences that aim at a better cardiac representation by
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Fig. 3. Unsupervised UMAP clustering for the different priori information.

Fig. 4. Classification results were measured in accuracy using the
MCIGAN-generated embedding space conditioned with Spatio-temporal
priors. The confusion matrix of the (A) K-Nearest Neighbours, (B) Random
Forest, and (C) Support vector machine models are shown above.

using a set of Spatio-temporal priors. The resulting hidden
vectors could be used to support cardiac analysis in cine-MRI
sequences. The results show a remarkable low-dimensional
embedded space capable of accurately representing different
cardiac conditions. A set of experiments using shape and
motion priors shows that the integration of both information
yields a better representation of cardiac conditions as shown
by the F1-score metric results in table I. The proposed
embedding vectors represented complex visual patterns in
cine-MRI slices and obtained remarkable results when ap-
plied in a cardiac condition classification task.It should be
reminded that pathologies used in this work are limited to
known diseases in the medical domain. Another limitation
in this work is that the quality of the apriori information is
dependant on computational techniques used for extracting
them. Future work should cover an important study on the
explainability of the embedding space and the development
of progressive architectures for the GAN, allowing a simpler
training process than the current one,and finally, more focus
should be placed on learning and studying the embedded
space rather than learning the map between the distributions.
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