
  

  

Abstract— This work aimed to develop a noninvasive and 

reliable computed tomography (CT)-based imaging biomarker 

to predict early recurrence (ER) of intrahepatic 

cholangiocarcinoma (ICC) via radiomics analysis. In this 

retrospective study, a total of 177 ICC patients were enrolled 

from three independent hospitals. Radiomic features were 

extracted on CT images, then 11 feature selection algorithms and 

4 classifiers were to conduct a multi-strategy radiomics modeling. 

Six established radiomics models were selected as stable ones by 

robustness-based rule. Among those models, Max-Relevance 

Min-Redundancy (MRMR) combined with Gradient Boosting 

Machine (GBM) yielded the highest areas under the receiver 

operating characteristics curve (AUCs) of 0.802 (95% 

confidence interval [CI]: 0.727-0.876) and 0.781 (95% CI: 0.655-

0.907) in the training and test cohorts, respectively. To evaluate 

the generalization of the developed radiomics model, 

stratification analysis was performed regarding different centers. 

The MRMR-GBM-based model manifested good generalization 

with comparable AUCs in each hospital (p > 0.05 for paired 

comparison). Thus, the MRMR-GBM-based model could offer a 

potential imaging biomarker to assist the prediction of ER in 

ICC in a noninvasive manner. 

 
Clinical Relevance— The proposed radiomics model achieved 

satisfactory accuracy and good generalization ability in 

predicting ER in ICC, which might assist personalized 

surveillance and clinical treatment strategy making. 

I. INTRODUCTION 

Intrahepatic cholangiocarcinoma (ICC) is the second most 
common primary hepatic malignancy which accounts for 10-
20% of all primary liver tumors [1, 2]. Although ICC is 
relatively rare, it presents with severely aggressive tumor 
biology and dismal prognosis [3, 4]. Surgical resection is the 
mainstay of therapy and the only potentially curative treatment 
for patients with the resectable disease [5]. However, it is 
reported that up to 70% of patients developed recurrence after 
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surgery [6], which rendered the median survival is only 12 
months [7]. Therefore, preoperative risk assessment is 
essential that would greatly assist in timely postsurgical 
adjuvant therapy regime making and personalized surveillance 
to prolong the survival of ICC patients. 

Recent studies reported that clinical factors include tumor 
size, lymph node metastasis, and vascular invasion were 
related to postoperative recurrence in ICC [7-9]. The 
American Joint Committee on the Cancer staging system 
could also guide postsurgical survival prediction [10]. 
However, those risk factors and staging schemes are mainly 
derived by population-based correlation analyses, thus lacking 
individualized predictive accuracy. Considering that medical 
imaging including computed tomography (CT) and magnetic 
resonance imaging (MRI) plays an important role in 
preoperative assessment of ICC during initial diagnosis, it is 
well worth exploring an imaging-based biomarker for the 
prediction of early recurrence (ER) in ICC [5]. 

A newly emerging technique – radiomics provides a 
potential approach to solve this targeted clinical issue. Based 
on machine learning methods, radiomics harnesses mineable 
quantitative features extracted from encrypted medical images 
along with clinical or genetic data to produce an evidence-
based clinical decision support system [11]. It has been 
successfully applied in recurrence prediction, lymph node 
metastasis prediction, and immunotherapy evaluation [12-14]. 
Regarding ICC, Liang et al. [15] extracted radiomic features 
from MRI and applied Spearman’s rank correlation and 
logistic regression to predict the ER in ICC. Zhao et al. [16] 
utilized MRI-based radiomic features with prognostic 
immunohistochemical markers via univariate analysis and 
logistic regression to enable the prediction of ER in ICC. The 
aforementioned studies demonstrated the feasibility and 
potential benefits of using MRI-based radiomics for ER 
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prediction. However, CT-based and multi-center radiomics 
studies are still limited for the prediction of ER in ICC. 

Thus, we proposed multi-strategy radiomics modeling to 
predict ER in ICC using CT images in the multi-center cohort. 
In summary, our contributions are as follows: 1) Complete CT 
images and follow-up information were collected from 177 
patients with ICC in three hospitals, which ensured enough 
amount to increase the credibility of the developed radiomics 
model. 2) Eleven feature selection algorithms and 4 classifiers 
were cross-combined to generate 44 combination modeling 
strategies, which would optimize the algorithm development 
for the prediction of ER. 3) Test cohort-based and cross-
validation-based compound rules were applied to help identify 
the most accurate and reliable radiomics model.  

 

 

II. METHODS 

A. Data 

The experimental procedures involving human subjects 
described in this paper were approved by the Institutional 
Review Board of the three participating hospitals. A total of 
177 patients were collected from August 2010 to August 2017 
in three hospitals. The inclusion criteria were as follows: (i) 
patient who underwent radical resection was pathologically 
diagnosed as ICC; (ii) receipt of contrast-enhanced CT 
performed within one month before hepatectomy; and (iii) 
follow-up with a duration of one month and continued for at 
least 1 year. The exclusion criteria were as follows: (i) ICC 
confirmed by biopsy; (ii) disease diagnosed as combined 
hepatocellular carcinoma plus cholangiocarcinoma; and (iii) 
patient underwent radiofrequency ablation before surgery. 

Patients were divided into a training cohort (from August 
13, 2010, to June 30, 2016, n=124) and a time-independent test 
cohort (from July 1, 2016, to August 27, 2017, n=53). All 
patients had been followed up at least 1 year unless endpoint 
events occurred. We defined ER as recurrence within one year 
after surgical resection. 

B. Image acquisition 

CT images were acquired via different CT scanners in each 
hospital. The instruments of the three hospitals were 128-slice 
CT scanner (SOMATOM Definition AS+, Siemens Medical 
Solutions USA, Inc), 64-Slice LightSpeed VCT (GE Medical 
Systems, Milwaukee, WI), and SOMATOM Definition Flash 
(Siemens Healthcare), respectively.  Scanning parameters and 
contrast media information are also different among those 
hospitals. After injection of contrast material, plain, arterial, 
portal venous, and delayed phases were acquired. We utilized 
portal venous phase CT images to conduct the radiomics 
analysis. 

C. ROI segmentation and features extraction 

The workflow of the study is shown in Figure 1. Firstly, 
the region of interest (ROI) was manually delineated on the 
largest cross-sectional layer of the tumor by a radiologist with 
5-year working experience using ITK-SNAP software. A total 
of 473 two-dimensional radiomic features were extracted on 
the ROI areas. The radiomic features could be divided into four 
categories: (i) 13 shape-based features, (ii) 18 first-order 
intensity statistics, (iii) 74 texture features derived from gray 
level co-occurrence matrix (GLCM), gray level run length 
matrix (GLRLM), gray level size zone matrix (GLSZM), 
neighboring gray-tone difference matrix (NGTDM), and gray 
level dependence matrix (GLDM), and (iv) 368 wavelet 
features with the same first-order intensity statistics and 
textural features extracted from ROIs after different wavelet 
decomposition in two directions (x, y). A detailed description 
of the extracted  radiomic features is provided at 
pyradiomics.readthedocs.io/en/latest/features.html [17]. 

D. Reproducibility test 

To achieve reproducibility analysis, we randomly chose 12 
patients from the training cohort and re-segmented the CT 
images by the former radiologist and another radiologist with 
7-year working experience in a blinded fashion. The same 
feature extraction was conducted on newly segmented ROIs. 
Intra- and inter-class correlation coefficients were calculated 
to assess the intra- and inter-observer agreement of feature 
extraction, respectively. The radiomic features of intra-class 
correlation coefficients larger than 0.8 and inter-class 
correlation coefficients larger than 0.75 were regarded as 
reproducible features. 

E. Machine learning algorithms 

Eleven feature selection algorithms were utilized based on 
three different principles: (i) information theory-based 
including Conditional Infomax Feature Extraction (CIFE), 
Conditional Mutual Info Maximization (CMIM), Mutual 
Information Maximization (MIM), Joint Mutual Information 
(JMI), Mutual Information Feature Selection (MIFS) and 
Max-Relevance Min-Redundancy (MRMR); (ii) similarity-
based including Spectral Feature Selection (SPEC) and 
ReliefF; and (iii) statistics-based including F-score, Gini Index 
(GI), and t-score. 

We investigated two sorts of 4 classifiers: (i) base classifier 
including Support Vector Machine (SVM) with the radial 
basis function kernel and Decision Tree (DT) and (ii) 
ensemble classifier including the Gradient Boosting Machine 
(GBM) and Random Forest (RF). 

Figure 1. Radiomics model workflow in this study. Firstly, the ROIs were 

manually segmented by a radiologist from the CT images. Secondly, the 
radiomic features based on shape, intensity, texture, and wavelet were 

extracted from ROIs. After the reproducibility test to remove the unstable 

features, 11 feature selection algorithms and 4 classifiers are combined pair-
wisely to construct the radiomics models. Finally, the optimal radiomics 

model was determined under a comprehensive assessment of accuracy and 

robustness and compared to the clinical model. 
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F. Radiomics modeling process 

All features were normalized by Z-score standardization. 
The abovementioned feature selection algorithms and 
classifiers were combined in pairs to acquire 44 modeling 
strategies. The feature selection algorithm could realize the 
ranking of features based on corresponding importance to 
predict the clinical target. The optimal number N of features 
was determined by the maximal mean area under the receiver 
operating characteristics curve (AUC) via 5-fold cross-
validation based on initial logistics regression in the training 
cohort. The selected feature set consisted of the top N features 
was fed into the classifier to predict ER. The parameters of the 
classifiers were set by the grid search. The cut-off value was 
derived based on the maximized Youden index to divide all 
patients into high-risk or low-risk ER groups regarding 
outcomes of the radiomics model. The performance of each 
model was assessed by the receiver operator characteristic 
(ROC) analysis. To estimate the robustness of radiomics 
models, relative standard deviation (RSD) was calculated in 5-
fold cross-validated in the training cohort [18]. RSD is defined 
as: 

RSD =  σAUC / μAUC 

where σAUC is the standard deviation of 5-fold cross-validated 

AUC values, and μ
AUC

 is the mean of 5-fold cross-validated 

AUC values. 

All modeling analyses were performed by Python v3.6.5 
(www.python.org). Feature extraction was carried out on the 
pyradiomics package v2.0.0 (pyradiomics.readthedocs.io). 
Feature selection algorithms were implemented on the scikit-
feature package v1.0.0 (featureselection.asu.edu). Classifier 
algorithms were implemented on the scikit-learn package 
v0.19.1 (scikit-learn.org/stable). 

G. Stratification analysis 

Stratification analysis was performed regarding different 
centers, the maximum diameter of tumor, and tumor-node-
metastasis (TNM) stage. AUC, accuracy (ACC), sensitivity 
(SEN), specificity (SPE) in each subgroup were calculated to 
assess the performance of the radiomics model. Delong test 
was used to compare the AUCs. 

H. Comparison to the clinical model 

A total of 17 clinical factors were firstly analyzed by 
univariate analysis with a p-value < 0.1. Then, these factors 
were analyzed by multivariate analysis with a p-value < 0.05. 
The final selected factors were fitted by logistic regression to 
obtain a clinical model. Comparison of clinical and radiomics 
models was performed by ROC analysis and violin plot. 

III. RESULTS 

A.  Patient characteristics 

Baseline characteristics of enrolled patients in the training 
and test cohorts showed no significant statistical differences in 
demographic or clinical characteristics between the training 
and test cohorts (p = 0.269–0.985).  

In total, 101 (57.1%) patients developed with ER and 76 
(42.9%) patients with non-ER. There was no significant 
difference for the ER status distribution in the training and test 
cohorts (p = 0.115). 

B. Recurrence predictive performance 

The optimal model was defined as a model with an RSD 
less than 0.05 and the highest AUC. According to this criteria, 
6 models were selected and regarded as stable radiomics 
models. Among the remaining models, MRMR combined with 
GBM which was defined as the MRMR-GBM-based model, 
presented the best predictive performance (training AUC: 
0.802(95% confidence interval [CI]: 0.727-0.876), training 
ACC:0.750, training SEN:0.879, training SPE:0.603; test 
AUC:0.781(95% CI: 0.655-0.907), test ACC:0.698, test 
SEN:0.714, test SPE:0.667; RSD:0.040). The heatmaps of test 
AUCs and RSDs of all of the methods are reported in Figure 
2. 

 

 

C. Stratification analysis 

Stratification analysis showed comparable predictive 
performance of the MRMR-GBM-based model in subgroups 
regarding different centers, tumor size, and TNM stage (p > 
0.05 for paired comparison). The results in the test cohort are 
shown in Table I.  

D. Comparison to the clinical model 

Two clinical factors were selected - the maximum diameter 
of tumor and tumor number. The performance of the clinical 
model (test AUC: 0.565 [95% CI: 0.407-0.723]) was 
statistically lower from the MRMR-GBM-based model (p = 
0.029). The distribution of predictive scores of the MRMR-
GBM-based model in the test cohort indicated the strong 
discriminative ability (p = 0.002), but the clinical model was 
relatively poor (p = 0.281). The ROC curve and violin plot of 
the two models are shown in Figure 3. 

 

 

Figure 2. The predictive and robust performance of all radiomics models 

built by various feature selection algorithms (in rows) and classifiers (in 

columns). (A) Heatmap of AUC in the test cohort. (B) Heatmap of RSD. 

Figure 3. Comparison of the MRMR-GBM-based model and the clinical  

model. (A) ROC curve of the MRMR-GBM-based model and the clinical  
model. The p-value of the Delong test is less than 0.05, which indicates a  

significant statistical difference. (B) The violin plot of the MRMR-GBM-

based model and the clinical model, which shows the distribution of  
predictive scores in the test cohort. The p-value of the Student’s t-test less  

than 0.05 indicates a strong discriminative ability of the model between the  

ER and non-ER groups, and vice versa. 
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TABLE I.   

STRATIFICATION ANALYSIS OF THE OPTIMAL RADIOMICS MODEL IN THE 

TEST COHORT 

Subgroups AUC (95% CI) ACC SEN SPE 

Center 

Southwest 
Hospital 

0.756* 
(0.544-0.969) 

0.682 0.692 0.667 

Chinese PLA 

General 
Hospital 

0.739* 
(0.548-0.930) 

0.680 0.706 0.625 

The First 

Affiliated 
Hospital of 

China 

Medical 
University 

1.000* 
(1.000-1.000) 

0.833 0.800 1.000 

TNM 
Stage 

Ⅰ/Ⅱ 0.731* 
(0.534-0.927) 

0.667 0.600 0.750 

Ⅲ/Ⅳ 0.754* 
(0.515-0.994) 

0.731 0.800 0.500 

The 
maximum 
diameter 
of tumor 

≤2 cm 0.825* 
(0.636-1.000) 

0.722 0.545 1.000 

2-5 cm 0.769* 
(0.527-1.000) 

0.600 0.462 0.857 

>5 cm 0.830* 
(0.620-1.000) 

0.800 0.727 1.000 

* means the AUC of the subgroup no statistically less than the overall AUC (p > 0.05)  

IV. DISCUSSIONS AND CONCLUSION 

In this retrospective study, we conducted a multi-strategy 
and CT-based radiomics analysis in the multi-center cohort for 
predicting ER in patients with ICC. Previous studies 
performed MRI-based methods to predict prognosis in HCC 
based on single-center cohort, and limited machine learning 
algorithms were compared in the studies [15-16]. Considering 
that CT images are more commonly used at the initial 
diagnosis of ICC in clinical settings, the CT-based radiomics 
model is worthy to be explored to complement the relevant 
studies. Besides, identifying the optimal modeling 
methodology is crucial in radiomics analysis [11]. Machine 
learning-based methods may behave with significant variation 
towards different clinical issues and sample sizes. Thus in this 
study, we fulfilled 44 modeling strategies to figure out the 
optimal machine learning method for the target of ER 
prediction in ICC in the multi-center cohort. Our finding 
manifested that the MRMR-GBM-based strategy was the most 
suitable modeling strategy for ER prediction in ICC. 
Meanwhile, the results proved that the noninvasive imaging 
biomarker derived via radiomics could compete with the 
clinical model with improved prediction accuracy and a good 
generalization capability. This study has some limitations. 
Genetic information is also of great significance for prognosis 
prediction in ICC, thus, the inclusion of genetic data could be 
integrated into the prediction system to achieve a more 
accurate outcome. In addition, although a relatively 
satisfactory result was achieved, a prospective study should be 
proposed to validate the effectiveness of the noninvasive 
imaging biomarker for ER prediction in ICC. 

In conclusion, CT-based radiomics could generate a 
promising imaging biomarker for preoperative prediction of 
ER in ICC to assist personalized treatment strategy making. 
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