
  

features directly from the low-resolution image and compute 

the high-resolution image. 

  

Abstract— Ultrasound (US) image diagnosis is widely used for 

detection and treatment of human malignant tissues. Physicians 

perform differentiation of tissues through interpreting 

ultrasound echo images morphologically. However, the 

ultrasound image always comes with speckles, which makes 

segmentation of a target tissue difficult. Recently, a deep 

learning (DL) approach becomes a new way for picture 

denoising instead of signal processing. In this report, we use the 

DL denoising to reduce the US speckles. Subsequently, we 

perform DL segmentation well known for other medical images. 

In order to further increase the segmentation accuracy, we also 

perform DL superresolution. The DL superresolution is also well 

known for a picture and however, not so for an echo image. The 

target segmentation tissue is a carotid artery, specifically a 

lumen. To verify the feasibilities of our approaches, simulations 

and in vivo experiments are performed. 

 
Clinical Relevance— Method effectiveness is confirmed for in 

vivo data. 

I. INTRODUCTION 

Ultrasound (US) image diagnosis is widely used for 
detection and treatment of human malignant tissues. 
Physicians perform differentiation of tissues through 
interpreting ultrasound echo images morphologically. 
However, the ultrasound image always comes with speckles, 
which makes segmentation of a target tissue difficult. As far, 
the speckle reduction was performed by various signal 
processings such as incoherent compounding of steered echo 
images, wavelet processing, etc. Recently, a deep learning (DL) 
approach becomes a new way for picture denoising and 
recently, the reports for speckle reduction on optical, radar 
imaging, etc. are increasing substantially. We also previously 
proposed the application of DL to the speckle reduction [1]. In 
this report, we perform speckle reduction using an Auto-
Encoder (AE) type DL. Subsequently, we perform DL 
segmentation using a U-net type DL. The segmentation has 
been performed for an X-ray CT and an MRI and however, not 
so for an echo image because of the existence of speckles. In 
ref. 2, speckle reduction and enhancing a contrast are 
performed via signal processing prior to the segmentation. In 
this report, in order to further increase the segmentation 
accuracy, we also perform DL superresolution. The DL 
superresolution is also well known for a picture and however, 
not so for an echo image compared to various inverse filtering 
on a linear model. In this report, we report the performances 
of well-known DL superresolutions in a trial. The target 
segmentation tissue is a carotid artery, specifically a lumen. To 
verify the feasibilities of our approaches, simulations and in 
vivo experiments are performed. 

 
 

II. METHODS 

We proposed two approaches I and II (Fig. 1) comprising 

of 3 Steps A to C to process ultrasound echo images, i.e., 

speckle reduction, superresolution and segmentation. In this 

report, in step A, the convolutional Auto-Encoder (CAE) [3] 

is used for reducing speckles; in step B, super-resolution using 

a convolutional neural network is performed for increasing a 

spatial resolution [4-6]; and in Step C, a traditional U-Net [7,8] 

is used for segmenting a target tissue or a region. 

One of our proposed approaches, I, i.e., Steps A to C, is 

shown in Fig. 1 (left). In step A, the CAE [3], which is 

unsupervised, is performed for the speckle reduction. Next, in 

Step B, one of the Super-Resolution Convolutional Neural 

Network (SRCNN) [4], the Fast SRCNN (FSRCNN) [5] and 

the Efficient sub-pixel CNN (ESPCN) [6] is performed. For 

comparison, the Step B is also performed solo. Finally, in Step 

C, the U-Net [7,8], which processes binarized data, is used for 

the segmentation. The Step C is also performed solo and for 

the result of Step A or B. 

Another approach II, of which order of Steps A and B is 

inversed with respect to that of approach I (Fig. 1, right), is 

also performed. 

  The Auto-Encoder (CAE) [3] used in Step A is one of the 

most popular approaches for unsupervised learning of 

complicated distributions. CAE has already shown a 

significant effect in generating various data such as 

handwritten digits, faces, object numbers, CIFAR (Canadian 

Institute For Advanced Research) images, segmentations; and 

in predicting the future from static images. However, it is still 

a new method for ultrasound image processing, for instance, 

for the speckle reduction. 

In step B, we perform the SRCNN, the FSRCNN and the 

ESPCN to increase the image spatial resolution, by which a 

decrease in spatial resolution caused by Step A is 

compensated and an accuracy of segmentation to be 

performed in the step C is increased. The SRCNN [4] is the 

pioneer of DL super-resolution. The network structure of 

SRCNN is remarkably simple, using only 3 convolutional 

layers. The FSRCNN [5] is an improved SRCNN mainly in 3 

aspects: (1) The final deconvolution layer is used to enlarge 

the size, so the original low-resolution image can be directly 

input into the network instead of enlarging the size with the 

bicubic method performed in SRCNN. (2) The feature 

dimension is made small to use smaller convolution kernels 

and use more mapping layers. (3) The mapping layers can be 

shared, and only fine-tuning the final deconvolution layer is 

required if models with different upsampling multiplicities 

need to be trained [5]. The ESPCN [6] is efficient to extract  
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The U-Net [7] is one of the early CNN algorithms for 

semantic segmentation. The symmetric U-shaped structure 

containing compressed and expansive paths was innovative 

and has been influenced on the later designs of several 

segmentation networks. 

III. SIMULATIONS 

A.  Echo simulation models -3 type point spread functions 

(PSFs) 

At first, simulations were performed. Simulated echo data 

were generated as a convolution of models of an ultrasound 

pressure (PSF: point spread function) and tissues, i.e., a blood 

and soft tissues. 3 type PSFs were modeled with Gaussian, 

parabolic and rectangular envelops. The carrier frequency 

was set to 3.75 MHz. The pulse length and the beam width 

were changed. For the Gaussian-type PSF, the respective 

axial (x) and lateral (y) standard deviations (σx and σy) had 0.1 

and 0.1, 0.2 and 0.2, 0.2 and 0.4, or 0.4 and 0.4 mm. The 

energies of the parabolic type PSFs were made same as those 

of the Gaussian-type PSFs. The pulse lengths and the beam 

widths of the rectangular type PSFs were made same as those 

of the parabolic type PSFs. 
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where λ represents a wavelength (about 0.4 mm) under the 

assumption of an ultrasound propagation speed of 1,540 m/s. 

The reflectivity of blood vessel wall, RFL, was set to 2, 3, 5 

and 10; and the scattering coefficients of soft tissues were 

modeled by a white noise with the standard deviation, 1. For 

the 3 superreolutions, weight data leaned for pictures [4-6] 

were used; and for the U-net 30 leaning data were used. Other 

parameters were set as follows: the epoch number = 300, the 

batch size = 8, and the learning rate = 0.001. 

. 

B. Evaluation methods 

The performances of speckle reduction and super-

resolution were evaluated quantitatively by using a peak-

signal-to-noise ratio (PSNR); and that of segmentation was by 

a ratio of a segmented lumen area with respect to a labeled 

area for the DL (area ratio). The performances were also 

visually evaluated. 

PSNR defined as a ratio of a peak value with respect to the 

root mean squared error (RMSE) estimated from input and 

output data [9] is often used. However, since the ground truth 

is unknown in real-world applications, and in order to allow 

performing the evaluation for various inputs or results yielded 

by Steps A to C, the modified PSNR was defined using a 

standard deviation (SD) as follows: 

                     PSNR = 20 log10
peak

SD
  [dB],                        (2) 

by which the evaluation can be performed for respective 

images independently. Since the gray-scaled images were 

shown in a full dynamic range, the peak value detected in 

vessel walls excluding artifacts equaled to 255. 

Fig. 1. Flowcharts of our proposed approaches I and Ⅱ. 

C. Results 

The results obtained for the Gaussian-, parabolic and 

rectangular type PSFs with σx = 0.2, σy = 0.4 mm and RFL = 

3 are shown in Figs. 2, 3 and 4. All the figures show the 

images obtained when using ESPCN (others obtained using 

SRCNN and FSRCNN omitted) in Step B; and only in Fig. 4, 

in addition to (a) the images, (b) and (c) summarize the 

PSNRs and the area ratios obtained using the ESPCN, 

FSNRCNN and SRCNN, respectively (other similar results 

omitted). Regarding the spatial resolution [(a)], the PSNR [(b)] 

and the area ratio [(c)], the results obtained for the rectangular 

type PSF (Fig. 4) was the best of all, and the order of a high 

performance was rectangular; parabolic (Fig. 3); Gaussian 

types (Fig. 2). For all the PSF types, the order of a high 

performance in Step B was ESPCN; FSRCNN; SRCNN. 

Correspondingly, ESPCN yielded the highest performances 

in both Approaches I and II. 

Specifically, at first, speckle reductions were successfully 

performed with Step A in the surrounding of the blood vessel 

for all the PSF types (Figs. 2, 3 and 4a). The PSNR increased, 

for instance, for the rectangular PSF, from 29.5 up to 33.3 by 

Step A solo (Fig. 4b). However, simultaneously the spatial 

resolution substantially decreased (Figs. 2, 3 and 4a). 

Moreover, for the Gaussian and parabolic type PSFs, artifacts 

were generated in the lumen, which degraded the subsequent 

results of Step B or C. This will be discussed in the next 

subsection also with other axial and lateral deviations and 

RFLs. 
The spatial resolution increased well in Step B (Figs. 2, 3 

and 4a) except for the speckle-reduced images. Speckles were 

slightly reduced simultaneously. The PSNR increased, for 

instance, for the rectangular PSF, from 29.5 up to 36.7 > 35.6 

> 34.7 with ESPCN, FSRCNN and SRCNN solo (Fig. 4b). 

For the speckle-reduced images, Step B did not recover nor 

increase the spatial resolution visually regardless the 3 

methods. 

Segmented lumen was colored by red (Figs. 2, 3 and 4a). 

Step C worked well, which was confirmed quantitatively and 

visually (Fig. 4c). The segmentations were successfully 

performed particularly with Step B. The area ratio increased,  
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Fig. 2. For Gaussian-type PSF, images obtained with ESPCN network in 

Step B. 

 

 

Fig. 3. Results obtained for parabolic type PSF. See caption of Fig.2. 

for instance, for the rectangular PSF, from 94.9 to 96.9% with 

ESPCN (Step B) solo. 

For all the PSF types, Approach II with performing Step B 

prior to Step A was the best of all visually and quantitatively 

(Figs. 2 to 4). Approach II achieved the higher PSNR and area 

ratio than the respective Steps solo and Approach I with 

performing Step A prior to Step B, e.g., for the rectangular 

PSF, 37.0 vs 29.5 and 34.9; 97.4 vs 94.9 and 95.2%. As 

mentioned above, Step B solo was effective in increasing the 

PSNR and the area ratio as well as the spatial resolution and 

however, ineffective when performed after performing Step 

A in Approach I, i.e., the lower PSNR and area ratio than with 

Step B solo. The reason will also be discussed in the next 

subsection. Actually, the speckle shape and size had an 

influence on the speckle reduction, the superresolution and 

the segmentation (corresponding specific results omitted). 

The better PSNR and area ratio were obtained from the higher 

spatial resolution images, i.e., with smaller σⅹ and σy such as 

0.1 mm. In the same sense, the order of a high performance 

was rectangular; parabolic; Gaussian type PSFs. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Results obtained for rectangular type PSF. (a) Images obtained with 

ESPCN network in Step B; and (b) PSNRs and (c) area ratios obtained 

when performing 3 methods. 

D. Discussions 

At first, the artifact generated by CAE is discussed with 

respect to the pulse length and beam width; and the 

reflectivity. 

The Pulse length and beam width was one of factors leading 

to the artifacts as shown in Fig. 5, for instance, RFL = 3 when 

(a) σⅹ ＝ σy ＝ 0.1, (b) σⅹ ＝ 0.1, σy ＝ 0.2, (c) σⅹ ＝ 0.2, σy 

＝ 0.4 and (d) σⅹ ＝ 0.4, σy ＝ 0.6 mm. The less artifacts were 

obtained with the smaller pulse length and beam width. 

Moreover, the order of less artifacts was the rectangular;  
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Fig. 5. Artifacts caused by speckle reduction for RFL = 3 with various σⅹ and 

σy. 

 
Fig. 6. Artifacts caused by speckle reduction when RFL = 2, 5 and 10. 

 

(a)    

(b)    

Fig. 7. Images obtained by ESPCN for (left) Gaussian-, (center) parabolic 

and (right) rectangular type PSFs with σⅹ ＝ 0.4 and σy ＝ 0.6 mm. (a) Raw 

images and (b) results. 

 

(a)    

(b)    

Fig. 8. Images obtained with σⅹ ＝ σy ＝ 0.1 mm. See caption of Fig. 7. 

 

parabolic; Gaussian-type PSFs. Thus, the less artifacts can be 

obtained from the higher spatial resolution image. 

The artifact also depended on the reflectivity. Fig. 6 shows 

for RFL = 2, 5 and 10 with σⅹ ＝ 0.2, σy ＝ 0.4 mm the 

speckle-reduced images. Also see the results with RFL = 3 

(Figs. 2 to 4). As shown, the smaller reflectivity the tissue 

mode had, the less artifacts. 

Next, for the superresolution, the 3 type PSFs with other 

pulse lengths and beams widths (standard deviations) from 

0.2 and 0.4 mm are discussed. Fig. 7 shows for the 3 PSF-

echo images (left, Gaussian; center, parabolic; and right, 

rectangular types) with σⅹ ＝ 0.4 and σy ＝ 0.6 mm (a) the raw  

 
Fig. 9. For human in vivo carotid artery, images obtained with ESPCN 

network in Step B. 

 

images and (b) the ESPCN results; Fig. 8 shows those with σⅹ 

＝ σy ＝ 0.1 mm. 

As mentioned above, when the pulse length and beam 

width were smaller such as with σⅹ = σy = 0.1 mm than such 

as with 0.2 and 0.4 mm and 0.4 and 0.6 mm, the PSNR 

became higher and the segmentation area became more 

correct. The pulse length and beam width also had influences 

on the superresolution results as shown. When the pulse 

length and beam width were larger such as with 0.4 and 0.6 

mm, the spatial resolution did not increase so much except for 

the rectangular PSF originally with a high spatial resolution 

(Fig. 7). 

However, for the originally high spatial resolution images 

such as with 0.1 and 0.1 mm, the superresolution was 

remarkably effective in increasing the spatial resolution, 

particularly for the rectangular PSF (Fig. 8). Thus, the super-

resolution works better when the spatial resolution was higher. 

Since the speckle reduction (step A) decreases the spatial 

resolution substantially, the superresolution should be 

performed on the raw image prior to the speck reduction. This 

is the reason why the approach II yielded the better results 

than the approach I. 

IV. HUMAN IN VIVO CAROTID EXPERIMENTS 

A. In vivo data 

The distributed echo data [10] of human in vivo carotid 

arteries were used, of which pixel sizes were 390 × 330 pixels. 

Different linear-array-type transducers with two frequencies 

(10 and 14 MHz) were used. In Step B, the same 3 methods 

were used. All the same parameters were set as those for the 

simulation data except for 32 U-net learning data. 

B. Results 

The order of a high performance was the same as that 

confirmed in the simulations, i.e., with ESPSN network; 

FSRCNN; SRCNN in Step B. For the 3 methods, almost the 
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same PSNR results as those obtained in the simulations were 

obtained (omitted). Fig. 9 shows the images, with no artifacts 

which can be generated by Step A, obtained with ESPCN. The 

speckles were reduced successfully and the artery wall was 

sharpened substantially. The lumen was also segmented 

correctly. The best PSNR (36.8) and area-ratio (98.7%) were 

obtained by Approach Ⅱ with ESPCN method. 

V. CONCLUSIONS 

We proposed 2 approaches for achieving high accuracy 

segmentation (step C) through (step A) speckle reduction and 

(step B) superresolution. Approach I uses the auto-encoder 

(CAE) to reduce a speckle noise first, then performs super-

resolution to recover the image spatial resolution using 3 

methods, and finally implements the U-Net to segment a 

target lumen, while Approach Ⅱ performs the super-resolution 

to increase the image spatial resolution in advance, then uses 

the CAE to reduce a speckle noise, and finally using the U-

Net to acquire segmented target lumen. Simulation and 

human in vivo carotid artery data showed that Approach Ⅱ is 

superior to Approach I visually and regarding the PSNR and 

area ratio. 

The CAE succeeded in speckle reduction. However, the 

spatial resolution decreased. Moreover, the in vivo and 

simulation data come with artifacts, being dependent on, a 

reflectivity and US pulse bandwidths, i.e., a pulse shape, and 

a pulse length and a beam width. Raw echo data should have 

high spatial resolutions and the more effective methods may 

exist. Moreover, the 3 super-resolutions were effective visibly 

and quantitatively for a high spatial resolution image but not 

visibly for a low one although the PSNR and area ratio 

increased. The superresolution should be performed on a high 

spatial resolution. Since the speckle reduction performed in 

Step A decreases the spatial resolution, the super resolution 

should be performed on the raw image prior to the speck 

reduction processing. This is the reason why the approach II 

yielded the better results than the approach I in this report. 

The comparison between Approaches I and II are being 

continued. We have already been searching for more efficient 

DL speckle reduction and superresolution methods. The 

newest results obtained with other methods such as TecoGAN 

(Temporal Coherence Generative adversarial networks) [11], 

DDSRCN (Deep Denoising SRCN), ResNet (Residual 

Network) types [12], etc. will also be presented in 

accompanying papers [13,14] in addition to those with the 3 

superresolution methods learned for the same echo data. Our 

previously performed inverse signal filtering with the 

maximum a posteriori [15] and the regularization [16] will 

also be used together. The contrast enhancement will also be 

performed together. The U-net also succeeded in 

segmentation, particularly through Steps A and B. However, 

to make the segmentation the more efficient, the parameters 

in the DL such as a leaning data number and an epoch number 

should be larger and a batch size should be optimized. 

Particularly, the possible occurrence of overfitting should be 

removed. 

Thus, the proposed approaches show a high potential to be 

clinically useful for automatic detection of blood flow and a 

blood vessel. Next targets will also be a heart, a tumor, tumor 

nodules, etc. 

To yield more accurate results, the more echo image data 

should be used than in this report. In addition, the ultrasound 

parameters such as a frequency, a pulse length, a beam width, 

axial and lateral bandwidths and focus position etc., and the 

tissue parameters such as RFL, scattering density and 

attenuation, etc. should also be dealt with in detail. When the 

ground truth is required for DL in real-world applications, 

using the simulation data will be performed. Not detected but 

raw rf-echo data will also be targets. These will be reported 

elsewhere with the omitted results. 
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