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Abstract— An important challenge when designing Brain
Computer Interfaces (BCI) is to create a pipeline (signal
conditioning, feature extraction and classification) requiring
minimal parameter adjustments for each subject and each run.
On the other hand, Convolutional Neural Networks (CNN)
have shown outstanding to automatically extract features from
images, which may help when distribution of input data is
unknown and irregular. To obtain full benefits of a CNN, we
propose two meaningful image representations built from multi-
channel EEG signals. Images are built from spectrograms and
scalograms. We evaluated two kinds of classifiers: one based on
a CNN-2D and the other built using a CNN-2D combined with
a LSTM. Our experiments showed that this pipeline allows
to use the same channels and architectures for all subjects,
getting competitive accuracy using different datasets: 71.3 ±
11.9% for BCI IV-2a (four classes); 80.7±11.8 % for BCI IV-
2a (two classes); 73.8± 12.1% for BCI IV-2b; 83.6± 1.0% for
BCI II-III and 82.10%± 6.9% for a private database based on
mental calculation.

Keywords: 2D signal representation, Convolutional Neural
Networks (CNN), Long Short Term Memory (LSTM), Short
Time Fourier Transform (STFT), Continuous Wavelet Trans-
form (CWT).

I. INTRODUCTION

Brain-computer interfaces (BCI) provide a direct channel
for communication and control between human brain and
external devices [1], many of them based on electroence-
falograms (EEG). The design of a successful BCI pipeline
process depends on the wise selection of good strategies
for three main steps: signal conditioning, feature extraction
and classification. In general, hyper-parameters for these
steps must be tuned for each subject when used BCI for
several subjects and environments, making difficult to deploy
these models. Attempts have been made to design automatic
inter-subjects models based on Convolutional Neural Net-
works (CNN) (for example [2]) because they are able to
automatically extract the most discriminatory features from
textures in an image [3]. However, in order to explode this
capability, it is mandatory to represent meaningful time-space
information into each image pixel and into its neighbour
relationship. Recently, several works have proposed image
representations and architectures using them. For example,
Olivas-Padilla and Chacon-Murguia [4] proposed a model
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called Discriminative Filter Bank Common Spatial Pattern
(DFBCSP), which is a modification of the Filter Bank
Common Spatial Pattern (FBCSP). This model looks for en-
hancing those frequency bands that most discriminate among
mental activities; features were classified using two CNNs,
with monolithic and modular structures respectively. Xu and
collaborators [5] presented a model based on scalogram
estimation of EEG, using Wavelet transforms at the C3
and C4 channels and combining them in a single image
as input for a CNN. Tabar and Halici [6] used STFT to
extract features from EEG signals classified with a CNN-1D
followed by a Stacked Auto Encoder (SAE). However, all of
these models required to define the CNN’s hyper-parameters
for each new set of data subjects being used.

In this paper, we present a simple but robust design of an
image representation of EEG segments, using a combination
of a CNN layer with a long-short term memory network
(LSTM) and a fully connected (FC) network. The main
contribution of this design is a pipeline which allows to get
meaningful frequencies and organize them in arrangements
of rows and columns, which maps the relationship of EEG
with respect to time and spatial positions of the electrodes.
This topological distribution allows a classification more
tolerant to intra-subject deployment than other models, at
least in two BCI domains: one based on motor imagery (MI)
and the other based on mental calculation activities, using the
same parameters for each subject.

II. METHODOLOGY

A. Signal Conditioning

It is common that recordings of EEG signals present noise
and/or missing values or artifacts. To replace missing values
in EEG we applied a median filter of 255 taps as well as
referencing the signal using the common average reference
(CAR) method. As usual, our signal conditioning process
included a band-pass filter from 8 to 30 Hz, in order to
preserve brain waves found in α (8–13 Hz) and β (13–30
Hz) bands, wich are described by several researchers as good
indicators of mental activity.

B. Primary feature extraction

Our proposed image representation of EEG was built from
data showing a meaningful relationship among EEG frequen-
cies, spatial location of electrodes and time. We evaluated
representations obtained from spectrograms, calculated with
the Short-time Fourier transform (STFT) and scalograms
calculated by a Continous Wavelet Transform (CWT) based
on the complex Morlet wavelet; channels were concatenated
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TABLE I: Parameters of the Short-time Fourier transform (STFT)
for the data sets used as benchmarks.

STFT BCI IV-2a BCI IV-2b BCI II-III MC
Window Hanning Hanning Hanning Hanning

Window size 250 250 128 512
Overlapping 225 225 112 480

FFT size (NFFT) 500 500 256 1024
Image 45×31 45×31 45×17 45×27

Concatenated 990×31 135×31 90×17 1440×27

TABLE II: Size in pixels of the scalograms built using CWT.

CWT BCI IV-2a BCI IV-2b BCI II-III MC
Image 45×1000 45×1000 45×384 45×1344

Concatenated 990×1000 135×1000 90×384 1440×1344
Resize 495×500 67×500 90×384 720×672

vertically. The specific parameter values chosen to calculate
these transforms and the size of spectograms for each data
set used in the experiments are detailed in section III; sizes
of final images are showed in the Table I.

Scalogram were calculated using a CWT based on com-
plex Morlet wavelets (cmor3-3) and Mexican hat, being
cmor3-3 the one that obtained the best results. Scales were
calculated every 0.5 Hz and channels were vertically con-
catenated; scalograms were resized using an inter-area in-
terpolation, in order to reduce the computational cost during
training the CNN. The resulting size of scalograms is showed
in the Table II.

C. Classification

Two classifiers were evaluated: a CNN-2D and CNN-2D
+ LSTM. The CNN-2D automatically extracts features in
the convolutional layers and classifies them using a fully
connected (FC) layer, while the CNN-2D + LSTM uses
a combination of a LSTM + FC layers for classification.
The idea behind using LSTM is to represent the temporal
information embedded in the EEG signals. Table III shows
the size of segments and number of channels used for each
dataset; images were normalized to [0,1] range. Both (CNN-
2D and CNN-2D + LSTM) have the same convolutional layer
structure, which consists of two convolutional layers with
activation function ReLU, padding and a max-pooling of 2
× 2; Fig. 1 shows these architectures.

For the LSTM layer, activation is performed by a hyper-
bolic tangent function and the last layer of the network is
built using Softmax. The dropout used in the hidden layer of
the MLP and in the LSTM layer was 0.5. For all networks,
Adam optimizer was used with a learning rate of 10−4; the
loss function was the categorical cross entropy, batch size
was 36 for BCI IV-2a and BCI IV-2b, 16 for BCI II-III
and 20 for mental calculation. Training was executed using
400 iterations when STFT was used for feature extraction
and 100 iterations when CWT was applied. Hyperparameters
of both architectures were selected using a grid search,
detailed in (Table IV). Table V and the Fig. 1 show the
selected hyperparameters for CNN-2D and CNN-2D + LSTM
networks.

TABLE III: Input sizes for each dataset.

Data set Signal segment Number of channels
BCI IV-2a 4 seconds 22
BCI IV-2b 4 seconds 3
BCI II-III 3 seconds 2

mental calculation 2.625 seconds 32

TABLE IV: Grid search values.

Hyperparameters Possible values
number of filters 2, 4, 8, 16, 32, 64

filters size (3,3), (15,3)
number of neurons 16, 32, 64, 128, 256

number of units 4, 8, 16, 32

Other training approaches, such as batch normalization,
transfer learning and fine-tuning were analyzed, but no im-
provement in performance was obtained. Also, we analysed
the use of an image representing each channel as a frame
in a video-style input feeding. However, this results on
worse performance than the one-image approach and more
computationally expensive. A data augmentation approach
was also tested observing an improvement using a few
subjects. But, we were not able to test the complete data
sets due to training time constraints.

III. EXPERIMENTS AND RESULTS

Our architecture was evaluated using these popular bench-
marks: BCI Competition IV dataset 2a [7], BCI Competition
IV dataset 2b [7], BCI Competition II dataset III [8] and a
private database, based on mental calculation, provided to us
by its creator [9]. All deep neural networks were developed
using Keras and experiments were performed using Google
Colab platform. Code is free available at github.

Table VI shows the accuracy of five independent execu-
tions using the training and testing sessions provided by the
BCI competition. Notice that for BCI IV-2a (2 classes: left
hand and right hand), BCI IV-2b and BCI II-III, the best
results were obtained using a STFT representation and the
CNN-2D + LSTM neural network. Indeed, for BCI IV-2a
using all 4 classes, the best results were achieved using
the CWT representation and the CNN-2D neural network.
Table VI shows average accuracy calculated using ten-cross
validation for BCI IV-2a (4 classes), BCI IV-2a (2 classes:
left hand and right hand) and BCI IV-2b ten-fold cross-
validation. Same table includes the results using five-fold
cross-validation for BCI II-III and mental calculation. For
data sets BCI IV-2a (2 classes), BCI IV-2b and BCI II-III,
the best results were obtained using STFT and CNN-2D; for
BCI IV-2a (4 classes) and mental calculation data sets the
best results were achieved using CWT and CNN-2D + LSTM.

Table VII shows the results of the proposed architecture
along with several state-of-the-art work for each set. An
AUC-ROC of 0.89±0.01 was obtained using five-fold cross-
validation, slightly overcoming the work of [9].

In general, the CNN-2D and STFT were the fastest compu-
tational schemes. According to [19] the average training time
per subject using BCI IV-2a was 2,580 seconds; in [20] the
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TABLE V: Hyper-parameters of the CNN-2D and CNN-2D + LSTM networks.

Dataset IV-2a IV-2a IV-2b IV-2b II-III II-III MC MC
Repre STFT CWT STFT CWT STFT CWT STFT CWT

Input (a) 990x31 495x500 135x31 67x500 90x17 90x384 1440x27 720x672
CNN-2D (b) 16@3x3 16@3x3 4@3x3 8@3x3 64@3x3 8@3x3 2@3x3 8@15x3

Dense (CNN-2D) (d) 128 128 32 16 256 128 16 32
LSTM (c) 8 32 4 8 32 16 4 8

Dense (LSTM) (d) 128 256 32 16 256 128 16 32

Fig. 1: Proposed architecture, CNN-2D (green network) and CNN-2D + LSTM (green network plus blue network).

TABLE VI: Average Accuracy for the different data sets using the
training and testing sessions provided by the competition calculated
using cross validation.

CNN-2D CNN-2D + LSTM
Data set STFT(%) CWT(%) STFT(%) CWT(%)
IV-2a (4) 66.4±10.3 67.0±11.4 65.9±9.9 66.9±11.0

IV-2a (4) CV 68.4±12.5 69.9±12.1 68.0±12.0 71.3±11.9
IV-2a (2) 79.7±12.3 80.6±12.2 80.7±11.8 80.3±12.4

IV-2a (2) CV 79.9±11.2 79.7±12.4 79.5±11.3 79.9±12.6
IV-2b 73.4±13.2 73.0±12.5 73.8±12.1 73.1±12.7

IV-2b CV 69.9±12.2 69.6±12.2 69.6±12.5 69.2±11.9
II-III 82.9±0.3 81.4±1.3 83.6±1.0 82.9±1.6

II-III CV 83.6±7.3 81.8±6.0 83.2±7.2 81.4±3.6
MC CV 76.6±8.4 81.7±7.0 74.7±9.2 82.1±6.9

TABLE VII: Accuracy values achieved for our proposal and
reported values for the different data sets with the training sessions
and tests and with cross validation (CV) (BCI IV-2a (4): 4 classes,
BCI IV-2a (2): 2 classes).

Data sets Related works Our proposal

IV-2a (4) 70.6±14.7 [10], 67.7±12.9 [11],
65.5±15.0 [12] 67.0±11.4

IV-2a (4) CV 69.2±14.1 [13] 71.3±11.9
IV-2a (2) 85.0±7.4 [4] 80.7±11.8
IV-2a (2) CV 79.4±13.9 [14] 79.9±11.2
IV-2b 84.2±11.3 [15], 80.0±13.0 [11] 73.8±12.1
IV-2b CV 77.5±7.7 [6], 76.1±8.4 [16] 69.9±12.2
II-III 90.1±1.0 [17], 90.0 [6], 89.2 [8] 83.6±1.0
II-III CV 91.4 [18], 89.5 [5] 83.6±7.3

reported time was 3,300 seconds; in [21] the average training
time per subject was 1.328 seconds and the time to predict an
example was 0.05 ms. However, in our proposal, for BCI IV-
2a using CWT and CNN-2D (the combination that generates
the best results while not the fastest), the training time is 93
seconds; in this way, state of the art works is surpassed with
respect to training time. With respect to prediction time, our
proposal requires 4 ms, which may be considered reasonable.
With respect to BCI IV-2b, the work of [6] reported a training
time of 1,157 seconds and a prediction time of 400 ms; in

[16] a training using only 60 samples took 18 seconds. In the
other hand, our proposal took 42 seconds for training using
400 samples and 1.09 ms for a prediction. For more details
on the results of this research, see [22].

IV. DISCUSSION

Our proposal has a higher classification performance when
the data set has many channels as in BCI IV-2a (22 channels)
and mental calculation (32 channels). Indeed, the best results
are obtained when the signal is longer in time (except for BCI
II-III); most of the published works showed the opposite, due
to high dimension in data. With respect to the two proposed
representations, STFT was better for few channels (BCI IV-
2b and BCI II-III) while CWT was better for many channels
(BCI IV-2a and mental calculation).

The neural networks CNN-2D and CNN-2D + LSTM may
be considered shallow, since they only have two convolu-
tional layers with max-pooling and one FC layer. Besides,
they are very similar to each other, their only difference is
that CNN-2D + LSTM network contains an LSTM layer
before the FC layer; notice that actually none of them
outperforms the other one with respect to performance.

It is important to point out that several works do not
report results using cross-validation, but just accuracy for
each subject. Even BCI paradigms has been used long time
ago, there is no standard about how to correctly report their
performance and this issue is specially troubling when test
are done over static datasets and no-online implementations.
In this work the mean and standard deviation of five indepen-
dent folds were reported, which gives a better information
about the behavior of the model during other executions.

V. CONCLUSIONS

We present a pipeline for BCI that is able of classifying
EEG signals from motor imagery or mental calculation,
using DL techniques that uses CNNs alone or combined
with LSTM networks. In this work, the same preprocessing,
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number of channels and network architecture were used for
all subjects of each data set. This gives some insight that
our framework is more versatile than others. In addition, our
proposed obtained reliable results both in the classification
of motor imagery and mental calculation. Our experiments
showed that CNN architectures are able to automatically
extract features from the STFT and CWT representations
to build robust 2D images. Indeed, the training time of
the proposed model overcame the time reported in other
works. This was because our network contains only two
convolutional layers. Considering that the prediction time
is fast (from 1.09 ms to 1.69 seconds), our proposal is
useful to implement pre-processing, feature extraction and
classification phases of a BCI system. As future work,
we propose to analyze other pre-processing and statistical
techniques over the generated 2D image in order to enhance
the differences among them with respect to each BCI class
keeping inter-subject invariance.
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