
  

  

Abstract— We conducted a retrospective study of long-term 

follow-ups in patients with cerebral cavernous malformation 

(CCM) treated by Gamma Knife radiosurgery (GKRS). CCM is 

one of the common cerebral vascular diseases. Hemorrhage is a 

common and dangerous symptom of CCMs, and re-hemorrhage 

may still occur in 30% of patients after the treatment of GKRS. 

We aim to identify the reliable imaging biomarkers using 

radiomics of magnetic resonance images (MRI) to predict the re-

hemorrhage after GKRS. 

 
Clinical Relevance— This study reported the longitudinal 

changes of MRI radiomic features in CCM after GKRS. 

Combining machine-learning approach with the longitudinal 

radiomic features can predict the re-hemorrhage of CCM after 

GKRS to guide the clinical management. 

I. INTRODUCTION 

Cerebral cavernous malformations (CCM) are vascular 
abnormalities in the brain consisting of clusters of abnormal 
and hyalinized capillaries surrounded by hemosiderin deposits 
and gliosis without intervening brain tissue [1]. The incidence 
of CCMs ranges from 0.4% to 0.8% in the general population, 
but they are the most common vascular abnormality, making 
up 10–25% of all vascular malformations [1]. Approximately 
25% of individuals with CCMs never experience any related 
health problems. Other people with this condition may 
experience serious signs and symptoms such as hemisensory 
deficits, cranial nerve deficits, hemiparesis, headaches, 
seizures, dizziness, and cerebral hemorrhage. Current 
treatments available for CCMs include conservative treatment, 
surgery, and Gamma Knife radiosurgery (GKRS). The 
primary therapeutic goal of GKRS is to prevent re-hemorrhage 
of the lesion, however about 30% of patients still experience 
re-hemorrhage after GKRS [2]. 

 In this study, we developed a prediction model of re-
hemorrhage after GKRS in CCMs based on longitudinal MRI 
radiomic features. We aim to provide a reliable system using 
the quantitative and non-invasive MRI method to guide the 
treatment decision and follow-up monitoring for the patients 
with CCM. 

II. MATERIALS AND METHODS 

A. Study Cohorts 

We retrospectively enrolled 162 patients with a total of 199 
CCM lesions, including 72 CCMs with re-hemorrhage after 
GKRS (the hemorrhagic group) and the other 127 CCMs 
without re-hemorrhage after treatment (the non-hemorrhagic 
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group) from Taipei Veteran General Hospital between 1993 
and 2020. Longitudinal magnetic resonance images (MRI) 
were collected for each patient before GKRS and yearly 
follow-up after GKRS. The study was approved by the local 
Institutional Review Board, and informed consent was waived. 

The inclusion criteria of patients in this study were as 
follows: (i) available longitudinal data, including MRI before 
GKRS and annual MRI follow-ups after GKRS for at least 4 
years; (ii) full series of T2-weighted images (T2W) and 
contrast-enhanced T1-weighted (CET1); (iii) sufficient MRI 
quality without significant head motion or artifacts. A total of 
769 lesion-wise follow-ups were finally included for the 
subsequent analyses and training of re-hemorrhage prediction 
models. 

B. Image Postprocessing and MRI Radiomics 

Several postprocessing steps on the MRI were applied to 

reduce the discrepancy of imaging parameters using our 

previously published MRI radiomics platform (MRP, 

http://www.ym.edu.tw/~cflu/MRP_MLinglioma.html) with a 

graphic user interface built on MATLAB programming 

environment [3]. The adjustment of image resolution will be 

first performed to resample all voxel size to 1.00 x 1.00 x 1.00 

mm3 without gaps between consecutive slices for each MRI 

contrast according to Image biomarker standardisation 

initiative (IBSI) [4]. We also resampled all voxel size to 0.50 

x 0.50 x 3.00 mm3 without gaps between consecutive slices 

for each MRI contrast to evaluate the effects of anisotropic 

spatial resolution on radiomic analysis. The CET1 images was 

then registered to the subject’s T2W images using a six-

parameter rigid body transformation and mutual information 

algorithm. Image intensity normalization was employed to 

transform MRI intensity into standardized ranges for each 

imaging modality among all subjects. The CCM region of 

interest (ROI) was determined based on the consensus of 

neurosurgeons and neuroradiologists for the GKRS treatment 

planning according to the standard operating procedures  

developed by our research team. The CCM lesions were 

manually delineated slice-by-slice on the T2W images to 

generate the resultant binary lesion masks for the subsequent 

radiomic analysis. 

The subsequent MRI radiomics analysis was also 

performed using the MRP [3]. An undecimated and discrete 

wavelet transform was employed to perform a multiscale 

representation of each MRI contrast using three-dimensional  
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Figure 1. Two-stage process of the re-hemorrhage prediction model 

construction. We developed re-hemorrhage prediction model with two stages: 
data input models and prediction model.  

 

Low (L) and high (H) spatial frequency filters. The 16 first-

order and 73 texture features, including 22 gray-level co-

occurrence matrix (GLCM) features, 11 gray-level run-length 

matrix (GLRLM) features, and 16 local binary patterns (LBP) 

features, were calculated on the raw MR images and 8 wavelet 

image sets (LLL, LLH, LHL, LHH, HLL, HLH, HHL, and 

HHH), yielding 585 features. The 8 shape and size features 

were calculated based on the three-dimensional geometry of 

the lesion volume. Overall, 1178 MR radiomics features (585 

features × 2 image contrasts + 8 shape and size features) were 

generated for each MRI dataset. 

C. Statistical Analysis of Clinical Characteristics 

Even though we extracted a huge number of radiomic 

features from MR images that may provide comprehensive 

information in divulging molecular profiles of CCM, the 

process of feature selection that removed redundant features 

could potentially improve the efficacy of the re-hemorrhage 

prediction. Before the feature selection of radiomics features, 

we performed statistical analysis to identify if any clinical 

characteristics (age, gender, size of CCM, clinical symptoms, 

and GKRS treatment parameters) may be significantly 

different between the re-hemorrhage and non-hemorrhage 

groups. The clinical characteristics were divided into 

continuous variables and categorical variables. Continuous 

variables were tested by the two-sample t-test; categorical 

variables were tested by the Chi-square test. 

D. Feature Selection and Prediction Model Construction 

We developed re-hemorrhage prediction model with two 

stages: data input models and prediction model  (Fig. 1). The 

first stage was data input model, including five sets of data 

input using different combinations of follow-ups. Model 1 

used the last time follow-up to predict the bleeding of the next 

follow-up; Model 2 used the last two time follow-ups to 

predict the bleeding of the next follow-up; Model 3 used all 

of the previous follow-ups to predict the bleeding of the next 

follow-up; Model 4 used MRIs before GKRS and the last time 

follow-up to predict the bleeding of the next follow-up; Model 

5 is similar with Model 4, but normalization of change values 

is performed. The second stage was the comparison between 

three prediction models, including multivariate Cox analysis, 

least absolute shrinkage and selection operator (LASSO), and 

machine-learning approaches. 

Subjects were randomly divided into two subsets (70% for 

the training subset and 30% for the testing subset). We 

developed five sets of data input models. First, a 5-fold cross-

validation approach with Univariate Cox analysis was used to 

calculate the number of repetitions of significant features (p-

value less than 0.05) and rank them in order, with a maximum 

of 5 repetitions and a minimum of 0 repetition. Next, the 

significant features with at least 3 repetitions were input into 

the three prediction models.  

We evaluated the best prediction model by accuracy, 

sensitivity, specificity, and the AUC of the ROC curve to 

determine which model had superior prediction power. After 

selecting the best model, we compared the prediction 

performance based on the isotropic spatial resolution (1.00 x 

1.00 x 1.00mm3) and anisotropic spatial resolution (0.50 x 

0.50 x 3.00mm3). 

III. RESULTS 

A. Clinical Characteristics of Study Cohort 

Table 1 lists the clinical characteristics of 162 enrolled 
patients with 199 CCM lesions. Overall 59 patients with a total 
of 72 lesions presented re-hemorrhage after GKRS, and 103 
patients with a total of 127 lesions were hemorrhage-free. 
Results of statistical analysis showed that no significant 
difference (p>0.05) in age, gender, size of CCM, clinical 
symptoms (cranial never deficits, body sensory dysfunction, 
hemiparesis, headache, dizziness, and seizure), average max 
dose, and average isodose level between the re-hemorrhage 
and hemorrhage-free group. Few clinical characteristics, 
including the lesion location and the average margin dose of 
GKRS, showed significant differences (p<0.05) between two 
groups. For the lesion locations, we found that brainstem and 
other locations are equally distributed in the hemorrhage-free 
group; while we found a higher value of margin dose in the re-
hemorrhage group. 

B. Performance of the Re-hemorrhage Prediction Models 

We compared prediction performance of the fifteen re-

hemorrhage models (5 input data models ×  3 prediction 

models). The re-hemorrhage prediction model with best 

performance was Model 3 with machine learning of K-nearest 

neighbor (KNN) classifier (M3ML model). The superior 

performance of the accuracy, sensitivity, specificity and the 

area under receiver operating characteristics curve (AUC) 

demonstrated the capbility of longitudinal MR radiomics with 

the machine-learning approach for effective prediction of re-

hemorrhage. The receiver operating characteristics (ROC) 

curves for the selected re-hemorrhage prediction models are 

shown in Fig. 2.  The re-hemorrhage of CCM after GKRS can 

be predicted by radiomics and machine-learning approaches. 

For the training dataset, AUC is 1.000 and accuracy is 100.0% 

for predicting bleeding in the first year after GKRS; The AUC 

is 1.000, and the accuracy is 100.0% for predicting bleeding 

in the second year after GKRS; the AUC is 1.000, and the 

accuracy is 100.0% for predicting bleeding in the third year 

after GKRS; the AUC is 1.000, and the accuracy is 100.0% 

for predicting bleeding in the fourth year after GKRS. The 

detailed selected radiomic features for Model 3 with machine-

learning approach are listed in Table 2. 
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TABLE 1. Clinical characteristics of 162 patients with 199 CCMs treated 

with GKRS between 1993 and 2020. 

Characteristic 
Re-Hemorrhage 

group 

Hemorrhage-

free group 
P-values 

No. of patients 59 (36.42%) 103 (63.58%) - 

No. of lesions 72 (36.18%) 127 (63.82%) - 

Gender (M/F) 24/35 50/53 0.3335# 

Age 39.85±14.71 40.84±13.98 0.6708* 

Lesion locations  

(count by lesion) 
   

Brainstem 24 61 
0.0440# 

Other locations 48 66 

Size of CCM 

(count by lesion) 
   

Small (< 3 cm3) 45 88 
0.6192*                

0.7333# 
Medium (3-6 cm3) 13 19 

Large (> 6 cm3) 13 20 

Clinical symptoms (count 

by patient) 
   

Cranial nerve deficits 19 28 0.4982# 

Body sensory dysfunction 15 31 0.5256# 

Hemiparesis 22 53 0.0818# 

Headache 18 31 0.9563# 

Dizziness 15 24 0.7611# 

Seizure 10 11 0.2530# 

GKRS Parameters (count 

by lesion) 
   

Average margin dose (Gy) 11.96±1.20 11.62±0.98 0.0290* 

Average Max dose (Gy) 20.05±2.18 19.88±2.02 0.5746* 

Average Isodose level (%) 59.90±5.51 58.45±6.57 0.1132* 

* : Continuous variables were tested by two-sample t test 
# : Categorical variables were tested by Chi-square test 

 

 
 
Figure 2.  The ROC curves for the selected re-hemorrhage prediction model. 

For the testing dataset of Model 3 with machine-learning approaches 
(M3ML), AUC is 0.6421 and accuracy is 72.1% for predicting bleeding in 

the first year after GKRS (A); AUC is 1.000 and accuracy is 100.0% for 

predicting bleeding in the second year after GKRS (B); AUC is 1.000 and 
accuracy is 100.0% for predicting bleeding in the third year after GKRS (C); 

AUC is 1.000 and accuracy is 100.0% for predicting bleeding in the fourth 

year after GKRS (D), representing the satisfactory results that can be 
achieved in the prediction model of re-hemorrhage based on the proposed 

method. 

 

TABLE 2. Radiomic predictors of Model 3 with machine-learning 
approaches (M3ML). 

(A) Predict for the first year outcome after GKRS by M3ML 

Radiomic Features 

GK_CET1_HHL Texture Range 

GK_CET1_HHL Texture Variance 

GK_T2_LLH Texture Third quartile 

GK_CET1_LHL Texture Standard deviation 

GK_T2_HHL Texture Corrlation 

GK_CET1_LLH Texture Third quartile 

GK_T2_HHL Texture Standard deviation 

GK_CET1 Texture Cluster Prominence 

GK_CET1_LHL_Texture_Range 

9 

 (B) Predict for the second year outcome after GKRS by M3ML 

Radiomic Features 

FU1_T2_HHH Texture_Entropy 

FU1_CET1_Texture LBP First quartile 

2 

 (C) Predict for the third year outcome after GKRS by M3ML 

Radiomic Features 

FU2_T2_LHH_Texture Inverse variance 

GK_CET1_LLL_Texture_Energy 

2 

 (D) Predict for the fourth year outcome after GKRS by M3ML 

Radiomic Features 

FU2_T2_Texture LBP Uniformity 

FU1_T2_Histogram_Skewness 

2 

 

The trained prediction model was then applied to the testing 

dataset. The results performed on the testing dataset showed 

a comparable model performance with that on the training 

dataset suggesting the efficacy of the model. 

For the testing dataset, the AUC is 0.6421, and the 

accuracy is 72.1% for predicting bleeding in the first year 

after GKRS; the AUC is 1.000, and the accuracy is 100.0%; 

for predicting bleeding in the second year after GKRS; the 

AUC is 1.000, and the accuracy is 100.0% for predicting 

bleeding in the third year after GKRS; the AUC is 1.000, and 

the accuracy is 100.0% for predicting bleeding in the fourth 

year after GKRS. The model performance was comparable in 

both the training and testing datasets for predicting bleeding 

in the second to forth year after GKRS (100% accuracy), 

except for the first-year prediction (72.1% accuracy). To 

improve the performance in the first-year prediction, more 

patients with re-hemorrhage after GKRS will be collected in 

our future study. 

IV. DISCUSSION 

We developed a re-hemorrhage prediction model, Model 3 
with KNN machine-learning approach, with satisfactory 
performance to probe the re-hemorrhage after GKRS in 
patients with CCM based on MRI radiomics. The predictive 
score estimated by this model can predict bleeding efficiently 
both in the training and testing datasets for the second to fourth 
year. Our proposed approach could utilize information 
extracted from longitudinal follow-up of CCMs after GKRS 
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and provide a quantitative and non-invasive tool for predicting 
future re-hemorrhage events after GKRS. 

A. Several Manifestations Related to Re-hemorrhage 

after GKRS 

Based on our results, we identified several trends that 

may be associated with re-hemorrhage after GKRS. In terms 

of image contrast, the radiomic features extracted from the 

sequences used in this study (CET1 and T2W) provided 

useful information for the prediction of re-hemorrhage. In 

terms of the radiomics category, histogram and texture 

features showed great potential to predict re-hemorrhage, 

with the exception of geometry which contributed little to the 

prediction of re-hemorrhage after GKRS. In terms of follow-

up time points, our results showed that the first two years of 

follow-ups provided critical information, matching the 

clinical decision-making strategy, to identify patients with 

strong recommendation for regular follow-up during the first 

two years after GKRS. This result was consistent with some 

of the literatures, while others suggested that follow-up for the 

first five years after GKRS was of interest. 

By evaluating the effects of isotropic and anisotropic 

spatial resolution on predicting re-hemorrhage after GKRS, 

we found that the predictive performance in two different 

resolutions showed no significant difference. 

B. Longitudinal Change of Radiomics in CCM 

Figure 3 presents the longitudinal changes of MRI images 
in a representative patient with re-hemorrhage after GKRS and 
in a patient without re-hemorrhage (hemorrhage-free). 
According to literatures, the hemorrhagic lesions appear varied 
signals depending on the age of the blood products, and small 
fluid-fluid levels may be evident on T1W images [5]; they 
appear as a hypointense rim with varied signal internally 
depending on the age of blood products. If a recent bleed has 
occurred, surrounding edema may be present on T2W images, 
and generally no enhancement on CET1 images. In the re-
hemorrhage case (Fig. 3A), T2W images showed a pattern 
consistent with the findings of previous studies. In addition, in 
the hemorrhage-free case (Fig. 3B), we found a reduction in 
the size of CCM lesion on both T2 images. Figure 3C presents 
longitudinal changes of the selected radiomic features in both 
the re-hemorrhage and hemorrhage-free cases. Since it is 
difficult to visualize the dynamic changes of the values in 
purely numerical form, we plotted a line graph to present the 
longitudinal changes of the radiomic features. The lines 
showed a relatively flat pattern in the hemorrhage-free case. 
However, we observed that the line in the re-hemorrhage 
group showed a more pronounced fluctuation before the 
bleeding occurrence. 

Several issues and limitations are discussed as follows. 
First, several other MRI contrasts, including T1-weighted 
images, diffusion-weighted images, and time-of-flight 
angiography, were not available in this study. Inclusion of 
these MRI data may further improve the prediction 
performance. Second, GKRS was reported to be effective in 
preventing bleeding within five years after treatment, but long-
term efficacy may require further study [6]. Sufficient 
longitudinal follow-ups and a larger number of CCM lesions 
should be collected in the future studies. Finally, to reduce the 
potential bias caused by the manual lesion delineation, the 

 
Figure 3. Longitudinal changes of images and radiomics. 

The longitudinal changes of MRI images in the re-hemorrhage group (A) and 
in the hemorrhage-free group (B), and the line graph of longitudinal changes 
of radiomic values in the re-hemorrhage group and in the hemorrhage-free 
group (C) presented the dynamic changes of CCM patterns through each 
follow-up. 

 

development of automatic segmentation of CCM lesions 
could be helpful to optimize the re-hemorrhage prediction 
model. 

V. CONCLUSIONS 

This study investigated the longitudinal changes of MRI 

radiomics features in patients with CCM after receiving 

GKRS treatment. The combination of machine-learning 

approaches and longitudinal radiomic features can predict the 

re-hemorrhage of CCM after GKRS to guide clinical 

management.  
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