
  

  

Abstract— There is a strong demand for acquisition, 
processing and understanding of a variety of physiological and 
behavioral signals from the measurements in human-robot 
interface (HRI). However, multiple data streams from these 
measurements bring considerable challenges for their 
synchronizations, either for offline analysis or for online HRI 
applications, especially when the sensors are wirelessly 
connected, without synchronization mechanisms, such as a 
network-time-protocol. In this paper, we presented a full 
wireless multi-modality sensor system comprising biopotential 
measurements such as EEG, EMG and inertial parameter data 
of articulated body-limb motions. In the paper, we propose two 
methods to synchronize and calibrate the transmission latencies 
from different wireless channels. The first method employs the 
traditional artificial electrical timing signal. The other one  
employs the force-acceleration relationship governed by 
Newton’s Second Law to facilitate reconstruction of the 
sample-to-sample alignment between the two wireless sensors.  
The measured latencies are investigated and the result show  
that they could be determined consistently and accurately by 
the devised techniques. 

 
Index Terms— HRI; EEG; EMG; IMU; Time 

Synchronization 

I. INTRODUCTION 

Towards highly intelligent human-robot interfaces,  to 
acquire, process and understand a variety of physiological 
and behavioral signals from the measurements of humans’ 
mental and physical processes becomes critically important 
[1]. Specifically, human’s motion intent can be manifested in 
complex data patterns embedded in multiple data streams  
including electroencephalogram (EEG) [2], electromyogram 
(EMG) [3], kinematics measurement (often by Inertial 
Measurement Units [4], and optical trackers) and force sensor 
data [5]. In the meantime,  multiple data stream brings a 
considerable challenges to data synchronization both for 
offline analysis and online applications [6]. Especially, the 
variety of sensors commercially available usually come with 
different sampling rates but no mechanism for network-time-
protocol. This poses a serious problem to data processing and 
machine learning to capture the underlying intrinsic yet non-
stationary associations of the measured signals. 
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In this paper, we report on  a wireless multi-modality 
sensor system, primarily comprising an OpenBCI [7] based 
solution for biopotential measurements such as EEG and 
EMG; and a Shadow Motion Capture Kit [8] for inertial 
measurements of articulated body-limb motions; and 
accessory sensors. Both OpenBCI and Shadow Motion Kit 
perform data transmission with a computer wirelessly 
through different channels, and they inherently operate on 
different clocks and different sampling rates. 

To synchronize precisely the data samples through the 
two (or more) WIFI channels, we have tested two methods. 
The first method is similar to the existing solutions, i.e., using 
an apparatus to generate alternating electrical waves 
switching between two levels, and the software processes the 
received signals from the measurements and compares the 
detected events therein with the true event timing measured 
by the computer clock. The other method relies on Newton’s 
Second Law using the force-acceleration relationship. 
Specifically, biopotential instrument is utilized to measure 
the force (through a force-electricity transducer) applied to 
the IMU, and, meanwhile, the IMU is used to measure the 
acceleration. The force-acceleration relationship thus allows 
us to reconstruct the sample-to-sample alignment between the 
two sensors.  

Several groups of different tests are carried out to 
investigate the measured latencies and confirm that they can 
be consistently and accurately determined. The two 
techniques perform a precise alignment of biopotential 
measurements and inertial measurements to an accuracy level 
of 10ms – the sampling interval of the inertial measurement. 
The latency of the wireless biopotential measurement alone 
varies with the change in the sampling rate, but can be 
accurately determined at 3-millisecond standard deviation 
level. 

II. SYSTEM DESIGN 

A. Multimodality sensor data acquisition system 
The system design emphasizes real-time signal 

measurements -- acquisition and computer pre-processing. As 
depicted in Figure 1, the whole system comprises a bio-
potential measurement device, a human body-motion 
capturing device, and a data acquisition controller and 
synchronization system running on a laptop PC. 

The fully wearable sensors include a) EEG/EMG 
electrodes, amplifier module and transceiver module included 
in the OpenBCI kit; b) body motion sensors including IMU 
(inertial measurement units) and foot-attached force sensors. 
These sensors and transceivers are battery powered, allowing 
fully ambulatory uses. This is important for human-robot 
interaction applications. 
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The body motion sensors and the transceiver as well as 
data acquisition and display software are provided as a 
Shadow Motion Capture system from the Motion Workshop. 
The Shadow system provides not only the body posture data 
estimated from the IMU data, but also the raw IMU 
measurements. Additionally, the system includes two insole 
units, for the left and the right feet respectively, that each 
measures the pressure force at the toe and the heel positions. 
Data are recorded at 100 Hz.  

Two tracker base stations were set up in the lab space 
that, when worked with a wearable tracker (Vive Tracker), 
provides absolute 3D positioning data. On the other hand, the 
wearable IMUs of Shadow provide body motion data in the 
local coordinate system (with respect to the “anchor” point 
on waist).   

For measurement of EEG and EMG signals, we choose 
the OpenBCI device, as shown in Figure 2. With OpenBCI’s 
Cyron and Daisy modules connected together, the system 
supports up to 16-channel bipolar bio-potential 
measurements, each channel consist of a pair of vertical pins 
connecting to the middle and end of a muscle to measure the 
EMG signal. 

For data transmission to the computer, a WIFI shield is 
added to the board (Figure 2b). The OpenBCI-GUI software 
from supplier provides the functionalities to locate the IP 
address of the WIFI module from the intranet, to configure 
system parameters, such as number of channels, sampling 
rates, etc., and to provide mechanisms to transfer EEG/EMG 
data to application systems through LSL. In our system, 
instead of using OpenBCI-GUI as a middleware for data 
transmission, direct TCP/IP communications with the WIFI 
module for device control and data inquisition are created, so 
that the system latencies are minimized as much as possible. 

 
Figure 2: Bio-potential measurement device: a) Cyton board the 
main board to acquire 8 channels data, b) WIFI shield, c) Daisy 
module with 8 more channels, d) Integrated amplifier-transceiver 
unit for EMG. 

B. Multi-modal data synchronization mechanism 
As mentioned earlier, the different modalities of the 

sensor modules are operated on two individual clocks and 
different WIFI connections. Due to the considerable 
variability in the latency of WIFI transmission and processes 
in hardware and software operations, one could not use the 
raw data samples at the receiving end (computer software) to 
infer the relative timestamps of each sample directly. 
Therefore, the synchronization mechanism is designed to re-
build data sample streams in real time, such that the 
reconstructed data samples can be precisely aligned across 

 a)  b) 

 c)  d) 

Figure 1: System Diagram. With a WIFI based mobile OpenBCI device attached to participants’ legs to detect EMG signals, a 
WIFI based mobile Shadow Motion system to detects the movements of body parts and foot pressure, and a VIVE tracker 
determines the global position, all data sent to a PC via WIFI for recording.   
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different modalities – including the computer’s own clock 
system. 

The mechanism works in two phases: 1) calibration 
phase, and 2) online processing phase. 

The calibration phase is critical as it measures the latency 
times and the actual sampling rates, and the measured latency 
times for each sensor can then be used to compensate the 
latency during online processing. 

The key in building a latency measurement device is 
creating special transient events that can be captured and 
detected at a high time-resolution by the various sensors. 
Thus, we have devised a solution that works by measuring 
artificially generated abrupt accelerations. Particularly, we 
firmly attach a vibration force sensor to the IMU unit, and 
link the force sensor to one of the EMG/EEG channels. The 
acceleration here is generated by applying a force abruptly 
(knocking) to the sensor. The fast-response force sensor 
transduces the force measurement into electrical potential, 
which in turn can be captured by the biopotential 
measurement instrument (OpenBCI EEG/EMG channel). At 
the same time, the acceleration signal is picked up by the 
IMU’s accelerometer. By jointly analyzing the received 
measurements of the same force (by the EEG/EMG sensor) 
and that of its instantaneous effect, i.e. acceleration (through 
IMU), we can then compute the statistics of the relative 
latency between the two sensors. 

In addition, the computer locks in the samples’ arrival 
times measured by the computer clock from both devices. 
This allows us to analyze the latency as well as the actual 
sampling rates. For precise measurement of actual sampling 
rate and latency, we have also devised a method to generate a 
special electrical waveform: the system uses a waveform 
generator (a MCU board) to create alternating electrical 
potential levels, and links the output to the OpenBCI board’s 
input port reserved for event-marking. Particularly, the 
system toggles the output potential between two levels 
regularly (in our system, the frequency is 1 Hz). The toggle 
events especially the timing information measured by the 
computer clock are logged and later compared with the 
received measurement from the OpenBCI board for precise 
latency and sampling rate analysis. 

 
Figure 3: Vibration force sensor based latency calibration for data 
synchronization.  

The vibration force sensor is from Phidgets. It uses a 
piezoelectric transducer to an generate electric in response to 
applied mechanical stress. As the output is not compatible 

with the of the acquisition board, a simple voltage divider 
circuit is added between the output of the sensor and the 
input of the acquisition board to make it compatible (Figure 
3). 

III. TEST DATA ACQUISITION AND ANALYSIS 

We have collected some testing data for offline analysis 
to study the latencies of our settings. The study protocol 
using healthy human subjects had been approved beforehand 
by the ethics review board of Agency for Science, 
Technology and Research, Singapore (IRB Ref. No. 2020-
006).  

A. Biopotential instrument sampling rate and latency 
calibration 

Using the above-configured system, we recorded three 
data files while running the bio-potential amplifier at 
different sampling rates: 250Hz, 500Hz, or 1000Hz. Figure 4 
shows two signals: the blue line represents the received 
signal of the marking channel (see Section II.B) in the y-axis 
versus the sample arrival time in the x-axis. The vertical 
straight blue lines represented the event-triggered toggles of 
the electrical signal. The red-color diamond marks the 
algorithm-detected points where the blue colored signal pass 
through the 0-value line. 

 
 
Figure 4: Biopotential sensor latency test. Blue solid line: the 
received signal; red-color vertical bars: the toggle events; the red-
color diamond shaped markers: detected toggle events in the 
arrived measurement samples.  

Therefore, the latency is the time interval between the red 
bars and red-color diamonds. 

Table 1 lists the statistics of our latency test results. The 
latency is around 10 milliseconds and it is small enough for 
our application.  

Table 1: Latency tests for 3 sampling rates 

Sampling Rate (Hz) Mean (ms) Std (ms) 
250 14 17.7 
500 9 4.1 
1000 8.9 3.4 

 

B. Inter-sensor latency 
We conducted a total of 9 rounds of recordings of a 

sequence of “knocking” events in both the biopotential 
instrument (OpenBCI) and the IMU sensor (Shadow 
Motion), as described in Section II.B) with a sampling rate of 
500Hz and 100 Hz, respectively. Figure 5 shows one of the 
recording. The x-axis denotes the sampling arrival times of 
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the measurements. The red color line shows the force-turned-
electrical-potential measured by the OpenBCI board. The 
numbers (1 to 20, showed 1-7 only) mark the detected 
maximum forces. The blue color line shows y-axis 
acceleration values measured by the IMU sensor, as the 
“knocking” was primarily in the y direction. The maximum 
points of acceleration, i.e. the primary peaks, are marked as 
blue-color numbers. Since the force is linearly related to the 
acceleration according to Newton’s Second Law. The two 
sequences of detected maximum acceleration and maximum 
force can be associated to determine the relative latency 
between the two sensors.  

 

 
 
Figure 5: Event matches between vibration sensor in recorded 
OpenBCI data (red) and accelerometer sensor in the motion data 
(blue).  

Figure 6 illustrates the statistical analysis of the latency.  
 

 
Figure 6: Relative IMU-Biopotential sensors data latency (the 
mean value as the curve, and the standard derivation as the added 
vertical bars)  

The grand mean of the relative-latency is approximately 
30 milliseconds. Considering that the motion data sampled at 
100Hz, and this is about 3 - 6 samples differences. The 
apparent standard deviation varied from as low as ~10ms to 
~50ms, while averaging ~20ms. This could be, by a large 
extend, attributed to the variation in sampling arrival time 
latency in the biopotential measurement (see Table 1) and 
that in the IMU data.  

While the IMU data’s latency could not be measured so 
far as precisely as that for biopotential measurement, the two 
measurements are both using WIFI connections to transmit 
data. Hence, we can refer to Table 1, which shows that for a 
sampling data stream at 250Hz, the standard deviation of 
transmission latency is 17.7ms. Hence, the variation 
measured in the relative-latency between two sensor data 
streams are very comparable and expected, which suggests 
that the ~30ms inter-latency is approximately the actual 
latency – which is actually consistent across different trials: 

deviated by 10ms only – or just 1 sample in motion sensor 
data. 

IV. CONCLUSION 

In this paper, a wireless multi-modality physio-motion 
sensing system for human-robot interfacing research has been 
developed and studied. The system requires precise 
synchronization between multiple sensors data in real-time. A 
sensing system using the OpenBCI solution for wireless bio-
potential (EEG and EMG) measurements and the Shadow 
Motion system for wireless inertial measurements has been 
established. The hardware+software mechanisms, the 
methods to calibrate the true sampling rates and the latencies 
from sampling to data receiving by the computer software 
through WIFI connections have been developed.  

Our experimental results suggest that the biopotential 
measurement has a latency that varies with the sampling rate, 
and reaches below 10 ms mean latency at or beyond the 
500Hz sampling rate, while the standard deviation of the 
latency can be as low as 3.4 ms for the sampling rate of 
1000Hz. Thus, by using our calibration protocol, the wireless 
biopotential measurements can be determined to a timing 
accuracy of better than 10 ms. 

Using our joint force-acceleration measurements, the 
relative-latency between the biopotential measurement and 
the inertial measurement can be estimated at approximately 
30 ms, with a very small variation (a single inertial 
measurement interval) across different repetition of the test. 

Given the measured latency and variations, the developed 
methodologies allow the system to be associated with inertial 
and biopotential measurements accurately in a full wireless 
setup, which could facilitate the research and development of 
high-performance human-machine interfaces. 
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