
  

 

Abstract— Continuous myoelectric prediction of 

intended limb dynamics has the ability to provide 

transparent control of a prosthesis by the user. However, 

the impact on these models of adding a human user into 

the control loop is less clear. Here, the ability of a User 

Response Model (URM) to continuously predict EMG 

activity from gait kinematics and kinetics collected during 

three mobility tasks (level-ground walking, stair ascent, 

and stair descent) was examined. Multiple-input, 

multiple-output NARX-based URMs were developed with 

two outputs (ankle plantarflexor and dorsiflexor) and 

variable inputs (ankle kinetics, and shank and/or ankle 

kinematics). Accuracy in predicting the tibialis anterior 

and medial gastrocnemius EMG was comparable across 

URMs regardless of the number of inputs. Stair descent 

had the lowest accuracy among the mobility tasks. No 

significant differences in normalized root-mean-square 

error and cross-correlation were found between URMs 

with five and nine inputs. A URM that continuously 

predicts EMG activity from gait kinetics and kinematics 

could be used to simulate human-in-the-loop myoelectric 

control of a transtibial prosthesis and examine the 

stability of the system to changes in the environment or 

due to control errors. 

I. INTRODUCTION 

Approximately fifteen percent of the world's population 

has a disability [1], with more than fifty million requiring an 

orthosis or a prosthesis [2]. Moreover, the number of people 

with lower-limb loss is predicted to increase substantially by 

2050 due to chronic diseases [3]. To regain a certain level of 

functionality while executing different mobility tasks (e.g., 

walking at variable speeds, slopes, stair ambulation), lower 

limb amputees typically rely on mechanically passive 

prosthetic legs that do not provide the power needed to fully 

restore gait [4]. Powered prostheses commonly use finite state 

(discrete) impedance control to mimic human gait over 

specific intervals (e.g., loading response, swing) and achieve 

a more natural gait across mobility tasks by generating power 

at the joint [5], [6]. However, discrete control has limited 

modes and often does not deal with transitions between 

terrains [7]. To bring out the full potential of powered 

prostheses, a controller that continuously detects the user's 

movement intention is needed to provide sufficient time for 

the system to process the signal and actuate the prosthesis.  
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Feedforward (open-loop) nonlinear autoregressive model 

with exogenous inputs (NARX) can be used to predict 

prosthetic joint kinematics continuously (i.e., ankle angle) 

from natural residual muscle activity of transtibial amputees 

during treadmill walking [8]. In doing so, they have 

demonstrated the feasibility of an EMG-based model to 

predict intended ankle angle which can overcome delays in 

signal processing and actuation of the prosthesis to provide a 

more biomimetic response. Recent work has demonstrated the 

feasibility of using open-loop and closed-loop architectures to 

provide accurate and robust predictive continuous estimates 

of ankle kinematics and ankle kinetics during multiple 

mobility tasks (level-ground walking, stair ascent, and stair 

descent) [9], [10]. For real-time implementation a recurrent 

(closed-loop) NARX architecture is ultimately required to 

predict ankle dynamics based on the actual, rather than 

desired, state of the limb and prosthesis. While it is possible 

to simulate the forward stability of the closed-loop NARX 

model for predicting intended limb dynamics, the impact of 

adding a human user into the feedback control loop is less 

clear. In order to explore the impact of human-in-the-loop 

control, the objective in this study was to develop an inverse 

model capable of simulating the user's EMG in response to 

changes in ankle dynamics (e.g., control errors, terrain 

perturbations), referred to here as a user response model 

(URM). With a URM, human-in-the-loop interactions with a 

closed-loop NARX model can be tested to ensure stable 

prosthesis control before testing with an actual human user. 

Recent studies have shown that it is possible to predict 

EMG profiles from various inputs (e.g., physiologic), 

supporting the feasibility of creating a URM. Gonzalez-

Vargas et al. developed a muscle excitation profile (MEP) 

predictive model that used Gaussian-fitting and nonlinear 

regression to predict MEP during ramp ambulation based on 

speed and slope elevation for a desired locomotion condition 

and the baseline condition [11]. Contreras-Vidal and 

colleagues used an unscented Kalman filter to continuously 

predict the low-frequency EMG envelope during walking on 

multiple terrains from fluctuations in the amplitude of 

electroencephalography slow cortical potentials [12].  

In this study, the feasibility of predicting EMG activity 

from gait kinematics and kinetics was investigated. A NARX-

based URM was employed to predict the low-frequency 

envelope of tibialis anterior and medial gastrocnemius EMGs 

from kinetic (ankle moment) and kinematic (shank linear 
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velocity and/or ankle angle) recordings across three mobility 

tasks (level-ground walking, stair ascent and stair descent). 

II. METHODS 

Surface EMG, kinetic, and kinematic data were acquired 

previously from six healthy participants (S1-S6) as they 

performed three mobility tasks (level-ground walking, stair 

ascent, and stair descent). All participants gave written 

informed consent, and all procedures were approved by 

Marquette University Institutional Review Board in 

accordance with the Declaration of Helsinki. Methods for data 

acquisition and pre-processing relevant to the current study 

are outlined below. For additional details, see [9], [10]. 

A. Experimental Setup and Procedures 

Each participant completed a minimum of 15 trials per 
mobility task. To decrease session length and reduce the 
possibility of fatigue, mobility tasks were not randomized. 
Participants walked along an instrumented walkway 
containing four 6-channel force plates (Advanced Mechanical 
Technology, Inc., Watertown, MA); two embedded in the 
floor, and two embedded in a modified 4-step instrumented 
staircase connected to a landing platform. During stair ascent 
trials, participants traversed the walkway at a self-selected 
speed, walked over the in-floor force plates, ascended the stairs 
in a step-over-step fashion, and walked to the end of the 
platform. Participants then turned, and when instructed, 
crossed the platform, descended the stairs, and walked across 
the in-floor force plates to finish at their stair ascent trial 
starting position (stair descent trial). During level-ground 
trials, the staircase and platform were removed, and 
participants walked the length of the walkway (~ 5 m) and over 
the in-floor force plates. 

B. Data Processing 

An OptiTrack motion capture system (NaturalPoint, Inc., 

Corvallis, OR) was used to record kinematic data at 120 Hz. 

Data from force plates were sampled at 1,200 Hz, low-pass 

(15 Hz, 4th-order Butterworth) and notch filtered (59-61 Hz, 

4th-order Butterworth) to remove noise, and then down 

sampled at 120 Hz. Kinematic and kinetic data were 

processed using motion analysis software AMASS and Visual 

3D (C-Motion, Inc., Germantown, MD). For each trial, ankle 

angle (sagittal, transverse, and coronal plane), shank linear 

velocity (anterior-posterior, medial-lateral and vertical 

direction), and ankle moment (sagittal, transverse and coronal 

plane; normalized to the participant’s body mass) time series 

and gait events were extracted. TrignoTM wireless electrodes 

(Delsys, Inc., Natick, MA) were used to record EMG activity 

from the tibialis anterior (dorsiflexor) and medial 

gastrocnemius (plantarflexor). EMG signals were sampled at 

1200 Hz, differentially amplified (909 V/V), band-pass 

filtered (20-499.5 Hz, 4th-order Butterworth), full-wave 

rectified, and low-pass filtered (5.5 Hz, 4th-order 

Butterworth) to obtain the low-frequency linear envelope, and 

then down sampled to 120 Hz. Time series of all data trials 

(EMG, kinematics, and kinetics) were truncated to only 

include data between the times where force data were 

available and normalized as a percentage of trial length. As a 

result, level-ground trials contained one full gait cycle, and 

each stair ambulation trial contained three gait cycles 

including two staircase transitions (i.e., from level ground 

onto the staircase, and vice versa). 

C. User Response Model (URM) 

The URM was designed to continuously predict the time 

course of tibialis anterior and medial gastrocnemius EMG 

profiles across mobility tasks and their transitions. 

Specifically, a multiple-input multiple-output (MIMO) 

recurrent (closed-loop) NARX model was created, trained, 

and tested in MATLAB R2019b (MathWorks, Inc., Natick, 

MA) using the Deep Learning Toolbox. The NARX-based 

URM consisted of an input layer in which windowed inputs 

(ankle kinetics, and shank and/or ankle kinematics), were 

passed through tapped delay lines. The URM model outputs 

(EMG) were fed back through second set of tapped delay lines 

and fed (together with the inputs) to a nonlinear hidden layer. 

The hidden layer output was then fed to a linear output layer 

containing separate outputs for the predicted tibialis anterior 

and medial gastrocnemius EMG profiles (Fig. 1).  

 For each mobility task, eleven trials from a single lower 

limb were used for training and testing. A k-fold cross-

validation strategy was used to train and test separate closed-

loop networks for each participant. One trial of each mobility 

task was held back and used to separately test the model 

performance after training (novel test trials). Eighty percent 

of the remaining trials (8 complete trials/task) were grouped 

into contiguous blocks for training, and twenty percent (2 

complete trials/task) were used for validation. For each fold 

of the cross-validation, twenty networks were generated using 

random initial weights and biases to improve generalization 

and avoid overfitting. The network with the best performance 

across mobility tasks was then selected as the fold's 

generalized network. Each model was trained and optimized 

to minimize the mean squared error between the 

experimentally measured muscle activity (targets) and the 

model predictions. Levenberg-Marquardt backpropagation 

with a maximum validation failure of 6, and a tansig function 

in the hidden layer were used for training. 

Model performance was characterized as a function of the 

prediction interval (input delay, PI: 8.3, 41.5, 83.3, 124.8, 166 

ms), and sampling window (SW: 8.3, 24.9, 41.5, 58.1, 83.3, 

99.6, 124.8 ms) specified via the tapped delay lines, and the 

number of hidden units (N: 2 to 20 in steps of 2). Since 

performance was minimally affected by the model 

parameters, the sampling widow and the number of hidden 

units were fixed at 83.3 ms and 16 units, respectively, to 

minimize error and complexity. To take into account the delay 

 
Figure 1. URM model based on a multiple-input multiple-output 

recurrent (closed-loop) NARX model. 
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between muscle activity and biomechanical response, the 

prediction interval (input delay of ankle and shank dynamics) 

was set to 83.3 ms (10-time steps), and the feedback delay 

(EMG estimates) was set to 8.3 ms (1-time step). 

Several types of URMs were created that differed based on 

the number of inputs provided to the model. Two MIMO 

models incorporated ankle angle and ankle moment (sagittal 

plane) as inputs (2MIMO). Five MIMO models included three 

additional inputs (shank velocity in all directions) (5MIMO), 

and nine MIMO models also included ankle angle and 

moment in the frontal and transverse planes (9MIMO). 

All performance measurements and statistical analysis 

were performed across participants using the novel test trials. 

Model performance was characterized using normalized root-

mean-square error (NRMSE) and squared cross-correlation 

peak (R2), calculated between the target and model prediction 

of each muscle activity. NRMSE was normalized by the range 

(maximum minus minimum) of the target trial. Separate 

three-way ANOVA (MATLAB R2019b) analyses were used 

to identify significant differences (p<0.05) in NRMSE and R2 

between MIMO models (2MIMO, 5MIMO, and 9MIMO), 

mobility tasks (level-ground walking, stair ascent, and stair 

descent), and muscles (tibialis anterior and medial 

gastrocnemius). Tukey's honest significant difference 

criterion (p<0.05) was used in all multiple comparison tests. 

III. RESULTS 

Fig. 2 shows the time series of the target and 9MIMO URM 

prediction of the tibialis anterior and medial gastrocnemius of 

the novel test trials for the three mobility tasks (i.e., k-fold 

with the best performance) of a typical participant (S02). 

URM EMG predictions in response to changes in gait 

kinematics and kinetics closely matched the experimentally 

measured EMG activity for both the tibialis anterior and 

medial gastrocnemius. For S02, the tibialis anterior NRMSE 

and R2 were 12.6±3.2% and 0.91±0.06, respectively, across 

mobility tasks. Similarly, the medial gastrocnemius NRMSE 

and R2 were 11.0±1.2% and 0.92±0.05, respectively. The 

performance of each MIMO URM across participants is 

shown in Fig. 3 for each mobility task. The results indicate 

that EMG prediction was better for 5MIMO and 9MIMO 

models and was poorest for all models during stair descent. 

Three-way ANOVA analysis revealed significant 

differences in NRMSE and R2 with main effects of MIMO 

model (NRMSE: F(2) = 8.76, p<<0.001; R2: F(2) = 14.8, 

p<<0.001), mobility task (NRMSE: F(2) = 20.11, p<<0.001; 

R2: F(2) = 67.99, p<<0.001), and EMG (NRMSE: F(1) = 

21.78, p<<0.001; R2: F(1) = 9.26, p<<0.01). The performance 

(NRMSE and R2) of the 2MIMO URM was significantly 

worse than the other models (Tukey's, p<<0.01), however, 

there was no significant difference between the 5MIMO and 

9MIMO models. There was a significant interaction between 

EMG and mobility task for both NRMSE and R2 (NRMSE: 

F(2) = 5.49, p<<0.01; R2: F(2) = 7.78, p<<0.001). Multiple 

comparison tests of the tibialis anterior EMG revealed 

significant differences in NRMSE across mobility tasks 

(Tukey's, p<0.05), with larger errors during stair descent. 

URM predictions of the medial gastrocnemius had 

significantly less error (Tukey's, p<<0.001) and higher 

correlation (Tukey's, p<<0.001) than the tibialis anterior 

during stair descent. Both EMGs had significantly lower 

correlations during stair descent when compared to the other 

mobility tasks (Tukey's, p<<0.01). 

IV. DISCUSSION 

The URM developed here demonstrates the feasibility of 

using an autoregressive model to continuously predict EMG 

activity across mobility tasks and their transitions using prior 

measurements of gait kinematics and kinetics. In doing so, the 

results take an important step toward simulating changes in a 

user's muscle activity (vis-à-vis EMG) that occur in response 

to changes in terrain and/or errors in intended ankle dynamics. 

The NARX-based URM model’s predictive capability, 

coupled with its closed-loop architecture, and the use of 

signals intrinsic to the prosthesis offer an advantage over 

previous studies [11], [12] for the prediction of EMG activity. 

Ankle angle and moment are common targets for the 

control of powered transtibial prostheses [6]. Often these 

systems actuate primarily ankle dorsiflexion and 

plantarflexion, which can be accurately predicted by residual 

antagonistic muscle activity responsible for sagittal ankle 

 
Figure 2. Time series of EMG predictions for level-ground walking, and stair ambulation of a typical participant (S02) (Model: 9MIMO; Parameters: 

prediction interval = 83.3 ms, feedback delay = 8.3 ms. sample window = 83.3 ms. size of the hidden layer = 16 units). URM predictions are shown for 
the novel test trials across mobility tasks (i.e., k-fold with the best performance). 
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movement. Similarly, shank velocities can be measured from 

intrinsic sensors in the prosthesis, making them readily 

available as inputs for a URM to simulate human-in-the-loop 

control. In the simulations reported here, URM performance 

significantly improved with the addition of shank velocities 

(5MIMO), and ankle angle and moment outside of the sagittal 

plane (9MIMO). The comparable levels of performance 

between 5MIMO and 9MIMO models suggest that shank 

velocity provided an important source of information about 

limb state that was used to differentiate the temporal profiles 

of EMG activity across mobility tasks.  

EMG prediction was poorest during stair descent, due in 

part to the increased variability in plantarflexion caused by a 

lack of kinematic constraints on ankle angle as the foot moved 

downward from one step to the next. While the prediction of 

tibialis anterior activity had significantly higher error and 

lower correlation than the medial gastrocnemius, there was no 

significant interaction between the number of model inputs 

and either the muscle being predicted or the mobility task. 

Thus, for a given URM (e.g., 5MIMO), predictions of tibialis 

anterior and the medial gastrocnemius activity were 

comparable across mobility tasks. 

In comparison to Kalman filters and MEP models, the 

NARX-based URM provided better predictions of continuous 

EMG profiles. EEG-based Kalman filters had a median 

correlation (r) of 0.4 for the medial gastrocnemius while 

walking in five terrains (level, stair and ramp ascent, and stair 

and ramp descent) [12]. The URMs tested here had 

comparable or higher average correlations than MEP 

predictive models (r = 0.88), although it is important to note 

that the MEP was evaluated as a single model that was 

generalized across participants [11]. 

While separate URMs were trained for each participant to 

assess the feasibility of predicting individual user responses 

for simulating human-in-the-loop control of a NARX-driven 

prosthesis, it is important to note that the same URM model 

architecture (prediction interval, feedback delay, sampling 

window, and hidden layer size) was employed across 

participants. URM performance could further be improved by 

optimizing the model architecture to maximize within-subject 

prediction of EMG in response to changes in gait. 

Despite the robustness of the URM model, the absence of 

pathological muscle activity and corrective responses to 

external errors are limiting factors in the study. URM 

performance when predicting EMG from the residual muscles 

of amputees will be assessed in future studies to account for 

individual differences in amputee muscle responses that are 

no longer explicitly tied to gait biomechanics. Prediction of 

EMG activity in response to external perturbations will also 

be needed to explicitly model EMG corrective actions in 

response to perceived errors during gait. Future work 

incorporating these features will need to determine the 

required level of model performance to simulate the stability 

of the interaction between the human-in-the-loop model and 

the closed-loop myoelectric control of a physical system. 
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Figure 3. Mean NRMSE and R2 values of each MIMO URM. Asterisks 
denote significant main effects of EMGs, model number of inputs, and 

mobility task (Tukey's, p<<0.01). Error bars denote ±1 standard 

deviation. 
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