
  

 

Abstract— Large deformable registration of brain images is 

essential for a variety of clinical imaging applications. State-of-

the-art diffeomorphic registration methods, such as large 

deformation diffeomorphic mapping (LDDMM), have high 

computational complexity and often require pre-processing to 

account for large, global displacements or rotations. In this 

paper, we present an integrated method that fuses landmark-

based thin-plate splines (TPS), patch-based B-spline and partial 

differential equation (PDE) based registrations synergistically to 

achieve improved accuracy and efficiency for large deformable 

registration of brain image. Landmark-based TPS and patch-

based B-spline were used for global affine transformation 

followed by deformable registration using LDDMM. The 

anatomical discrepancies between the source and target images 

were significantly reduced after TPS and B-spline based 

registration. As a result, the PDE based deformable registration 

could be done efficiently and effectively. The performance of the 

proposed method has been evaluated using simulation and real 

human brain image data, which provided more accurate 

registration than spline or PDE-based methods. Moreover, the 

computational efficiency of our method was significantly better 

than PDE-based methods. The proposed method may be useful 

for handling large deformable registration of brain images in 

various brain imaging applications. 

I. INTRODUCTION 

      Large deformable registration of brain images is an 

essential step in various longitudinal and population brain 

imaging studies. Some examples include registration of 

pathological brain images to a normal brain atlas [1, 2], 

quantitative analysis of infant brain development and study of 

the aging brain [3, 4]. Human neuroanatomies vary in both 

global shapes and local structures across a population. For 

large deformable registration of brain images, the key is to 

efficiently identify a diffeomorphic deformation field that will 

achieve accurate alignment of the corresponding 

neuroanatomical features of different brain images.  

      Large deformation diffeomorphic mapping (LDDMM) is 

one of the key diffeomorphic registration methods in practical 

use, which models spatial deformation by time integration of 

a sufficiently regular velocity field [5-8]. The method finds a 

velocity field v such that the mismatch between the source 

image and the target image is minimized subject to a 

smoothness regularization. The deformation filed Ø is 

modelled by a partial differential equation (PDE) that allows 

large diffeomorphic deformable transformation. To ensure 

numerical stability, the method requires the size of the time 
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step to be sufficiently small. Besides, the integration of the 

velocity field has high computational complexity. Therefore, 

LDDMM is computationally inefficient for many practical 

applications. Several methods have been proposed to address 

this problem by using, for example, a stationary velocity field 

to reduce the degrees of freedom of the deformation model [5, 

8]. Another problem with LDDMM is that the estimated 

initial momentum may not accurately encode the final 

diffeomorphism, especially when large deformation is 

required. Due to the regularization effect, it needs good pre-

processing to account for large, global displacements or 

rotations. To address this problem, the overall deformation 

field  f
s
 is often decomposed into two parts, i.e., f

s
(x) = 

f
se

(x) + f
sr

(x) , where  f
se

(x)  is the predicted initial 

deformation field and  f
sr

(x)  is the remaining part. In the 

previous studies, f
se

(x) were estimated using learning-based 

methods [9, 10], but the local deformation may not be 

accurately determined because of the use of global model to 

represent the entire deformation field. 

      We present here an integrated method that fuses landmark 

based thin-plate splines (TPS), patch-based B-spline and PDE 

based registration synergistically to achieve improved 

accuracy and efficiency for large deformable registration of 

brain images. Landmark-based TPS registration has been 

widely used for large global deformation using affine 

transformation [11]. It is especially useful for compensating 

large anatomical discrepancies between paired images and 

establishing local/patch correspondence between images. On 

the other hand, B-spline based Free-Form Deformations (FFD) 

[12] is efficient for determining local deformations. FFD is 

characterized by smooth, locally controlled, and fast 

interpolation, and could be implemented using a hierarchical 

multi-resolution structure. Perhaps more importantly, the 

basis functions of a cubic B-spline have a limited support, 

which is desirable for modeling subtle local patch-wise 

deformations [13].  

      In our proposed method, we use landmark-based TPS and 

patch-based B-spline to determine an initial displacement 

field for LDDMM. We then use LDDMM to further improve 

the deformation transformation by using a PDE model to pick 

subtle local deformations. The performance of our proposed 

method has been evaluated using simulation and real human 

brain image data. Our experimental results indicate that the 

proposed method could improve: 1) registration accuracy 
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over spline based registration, and 2) efficiency and accuracy 

over direct PDE-based registration. Details of the proposed 

method are given in Section 2, which is followed by 

experimental results in Section 3 and the paper conclusions in 

Section 4. 

II. METHOD 

      Considering a target image F and a source image M, 

deformable registration between the image pair (F, M) can be 

formally defined as follows: 

 û= argmax
u∈U

SIM(F, M(u)). (1) 

      The objective is to find an optimal displacement field û 

from all the possible displacement fields U such that the 

alignment accuracy between M and F is maximized. In order 

to reduce the computational complexity of direct registration, 

we decomposed the overall displacement field into three parts, 

i.e., 

 u ̂= ûTPS + ûB-Spline + ûPDE. (2) 

where ûTPS is the predicted initial global large displacement 

field using TPS, ûB-Spline  is the local displacement field 

estimated using patch-based B-spline, and ûPDE  represents 

the remaining displacement field measured by PDE-based 

registration. 

A. Landmark-based TPS registration 

      Landmark-based TPS registration method defines a 

transformation matrix between source and target images 

through the matching of the corresponding landmarks. The 

deformation model can be expressed as [11]: 

 Tt (x, y, z) = a1 + a2x + a3y + a4z +  

                     ∑ cjU( (xj, yj
, zj)  - (x, y, z)).n

j=1  (3) 

where U(x, y, z)=√x2 + y2 + z2 is radial basis function of thin-

plate splines and 𝑐𝑗 is the j-th coefficient corresponding to the 

j-th landmark. The displacement field predicted by TPS can 

be expressed as: 

 ûTPS = Tt(x, y, z) - (x, y, z). (4) 

In this method, identification of the corresponding 
landmarks is critical in order to minimize the bending energy 
of splines and ensure smooth deformation. In our work, the 
corresponding landmarks in the source image were identified 
by applying an initial B-spline registration field to landmarks 
defined in the image using scale-invariant feature transform 
(SIFT) [14]. After the corresponding landmark pairs were 
established, the large global deformation between the source 
and target images were determined using TPS deformation 
model. 

B. Patch-based B-spline registration 

      The above TPS registration works well for global 

deformation but lacks the local deformation capability. B-

spline registration is suitable for recovering local subtle 

deformation and is computationally efficient even with a large 

number of control nodes. The B-spline transformation 

function is defined as [12]: 

 Tb(x, y, z)= ∑ ∑ ∑ Bl(u)Bm(v)Bn(w)Øi + l, j + m, k + n.3
n=0

3
m=0

3
l=0   

  (5) 

where Ø denotes an nx × ny × nz mesh of control points Øi, j, k 

with uniform spacing. Functions B0  through B3  are basis 

functions of cubic B-spline and are defined as follows: 

 B0(r) = (-r3 + 3r2 - 3r + 1) / 6,  
 B1(r) = (3r3- 6r2 + 4) / 6,  
 B2(r) = (-3r3 + 3r2 + 3r + 1) / 6,  
 B3(r) = r3 / 6. (6) 

where 0 ≤ r < 1.  

      A hierarchical multiresolution implementation of the B-

spline model provides an even more efficient solution, with 

Ø1,…,ØS  denote a hierarchy of uniform grids at different 

resolutions. Each grid Øs defines a local deformation at the 

associated level of resolution. With this, the local 

transformation could be written as: 

 Tb(x, y, z) = ∑ Tb
s (x, y, z).S

s=1  (7) 

      The displacement field estimated by patch based B-spline 

can be derived as: 

 ûB-Spline=Tb(x, y, z) - (x, y, z). (8) 

 In order to ensure that the transformation is 

diffeomorphic, we constrained the Jacobian determinant of 

the registration field to be positive, and added isotropic total 

variation spatial regularization [15] on the displacement field. 

The registration was performed in a patch-wise way, allowing 

more flexible transformation in local areas. In our 

implementation, a patch size of 128 × 128 × 128 and a sliding 

window at step length of 100 were applied. In each patch 

volume, the displacement u(x)  for a given point x  in the 

image was interpolated from the neighboring control points 

by the respective basis functions and normalized using cross 

correlation (NCC) as similarity measurements.  

C. PDE-based registration 

      The PDE-based model operates directly on the velocity 

field v, which constrains the neighboring voxels to deform 

similarly and ensures spatially smooth velocity field within 

small time intervals. Given this, the final large deformation is 

achieved through integration of velocity over time. A well-

known viscous fluid model governed by the Navier-Stokes 

PDE is defined as [6]: 

 μ
f
∇2v + (μ

f
 + λf) ∇(∇∙v) + b = 0. (9) 

where μ  and λ  are the viscosity constants, ∇2=∇T∇  is the 

Laplacian operator and b is the body force that drives the 

registration based on an image matching criterion. Based on 

the model of viscous fluids, the remaining diffeomorphic 

transformation was derived as an integration of time-

dependent velocity field as: 

 ûPDE = Ø1 = Ø0 + ∫ vt(Øt) dt.
1

0
 (10) 
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      A path was given for Øt : Ω→Ω, t∈[0,1], which started 

with the identity mapping at t = 0 and terminated at t = 1. This 

formulation of the flow ensured the transformation to be 

invertible and continuously differentiable. To ensure the 

smoothness of deformation, the velocity fields were 

regularized using an appropriate differential operator [7]. The 

optimal transformation was then defined by the sequence of 

velocity fields that minimize the energy function: 

 v̂t= argmin
v: Ø̇t=vt(Øt)

( ∫ ∫ ‖Lv‖2 

Ω

1

0
+

1

σ2
‖I0°Ø1

-1 - I1‖
2
 ) . (11) 

where I0 denotes the source image and I1 represents the target 

image. 

III. RESULTS AND DISCUSSION 

      We evaluated the performance of our method through 

experiments with both simulated and real human brain images. 

For comparison, the direct PDE-based method was 

implemented using the Diffeomorphic Anatomical 

Registration Through Exponential Lie algebra (DARTEL) [5]. 

The TPS alone and TPS combined with patch-based B-spline 

registration methods were also implemented for performance 

comparison. 

      In the simulation experiments, we first performed a large 

deformation for a typical disk to “C” task. Where large 

deformation exists in this experiment. As shown in Fig. 1(a), 

the spline based methods such as TPS or TPS+B-spline could 

not handle such large deformations for its limit model 

performance. Second, we choose a toy example where large 

global affine transformation exists, for which the direct PDE-

based method could not handle the affine transformation well, 

as seen in Fig. 1(b). In comparison, our proposed method 

showed robust and satisfactory deformation performance for 

both cases. 

      Next, we compared the performance of our proposed 

method for real brain MRI images. For comparison, we used 

the state-of-the-art methods including diffeomorphic Demons 

(D. Demons) [16] and symmetric normalization (SyN) in the 

Advanced Normalized Tools (ANTs) software package [17]. 

Deformable registration was conducted between healthy brain 

image pairs (100 pairs) and brain image pairs from 

Alzheimer’s disease (AD) patients (90 pairs) with severe 

atrophy. The healthy brain T1-weighted images were 

obtained from the Human Connectome Project (HCP) 

database (http://www.humanconnectomeproject.org/). The 

AD patient brain T1-weighted images were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (http://adni.loni.usc.edu/). 

The results are shown in Fig. 2 and Fig. 3. For a better 

illustration of the performance, the white matter (WM), gray 

matter (GM), pallidum, putamen and hippocampus were 

segmented from the T1-weighted images for tissue-level 

registrations. As can be seen, the results obtained using our 

integrated method were better in deforming the structural 

details compared with the other methods. The quantitative 

evaluation and comparison of the deformation performance 

are shown in Table Ⅰ. From the dice similarity coefficient 

(DSC) comparison, our proposed method outperformed the 

others for both HCP data and AD data. For example, the DSC 

of our proposed method in HCP data were 0.8802 for GM and 

0.8763 for WM, which were higher than direct PDE (GM: 

0.8623; WM: 0.8495), D. Demons (GM: 0.8576; WM: 0.8407) 

and SyN (GM: 0.8773; WM: 0.8501) methods. Moreover, the 

proposed method can achieve more accurate registration 

results in brain subcortical regions such as pallidum, putamen 

and hippocampus, as shown in Table Ⅰ. With TPS firstly as a 

pre-registration step to account for large, global 

displacements or rotations and following local patch based B-

spline for local large deformations, PDE based method can 

converge more accurately and quickly. To evaluation the 

computation efficiency, the above algorithms were tested in 

CPU (Intel Core i5-8250U). The overall running time of our 

proposed method was 45 minutes, which was significantly 

less than direct PDE method, which took 82 minutes.  

 

Figure 1: Comparison of registration performance of TPS, TPS+B-spline, 

Direct PDE and our integrated method for (a) a large deformation disk to “C” 
task; (b) a large global affine transformation task. Our integrated method 

achieved the best deformation performance compared to the others. 

TABLE I.  QUANTITATIVE COMPARISON RESULTS FOR HUMAN BRAIN IMAGES DEFORMATIONS. THE DIRECT PDE, D.DEMONS AND SYN METHODS WERE 

COMPARED WITH OUR INTEGRATED APPROACH IN BOTH HCP AND ADNI DATASETS . 

    
DSC 

(GM) 

DSC 

(WM) 

DSC 

(Pallidum) 

DSC 

(Putamen) 

DSC 

(Hippocampus) 

DSC 

(minute) 

Methods HCP ADNI HCP ADNI HCP ADNI HCP ADNI HCP ADNI HCP ADNI 

Direct PDE 0.8623 0.7859 0.8495 0.8358 0.7642 0.7525 0.7734 0.7645 0.7702 0.7610 82 75 

D. Demons 0.8576 07801 0.8407 0.8295 0.7426 0.7387 0.7624 0.7433 0.7643 0.7533 14 11 

SyN 0.8773 0.7942 0.8501 0.8408 0.7891 0.7787 0.7803 0.7887 0.8035 0.7895 47 44 

Proposed 0.8802 0.8355 0.8763 0.8672 0.8103 0.7998 0.8021 0.8073 0.8223 0.8016 45 43 
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Figure 2: Comparisons of registration performance for real human brain 
images using HCP dataset. From top to down: transformation of a single slice 

of source image to the target image using D. Demons, SyN, Direct PDE, and 

the proposed method, respectively. The last three columns are zoom-in 
images of white matter, putamen and hippocampus. Inside the yellow boxes: 

local white matter regions. 

 
Figure 3: Comparisons of registration performance for AD patients brain 

images using ADNI dataset. From top to down: transformation of a single 

slice of source image to the target image using D. Demons, SyN, Direct PDE, 
and the proposed method, respectively. The last three columns are zoom-in 

images of white matter, putamen and hippocampus. Inside the yellow boxes: 

local white matter regions. 

 

IV. CONCLUSION 

      In this paper, we proposed a novel method for large 

deformable registration of brain images by effectively 

integrating landmark-based TPS, patch-based B-spline, and 

PDE-based registration. The performance of the proposed 

method has been evaluated using simulations and real human 

brain image data. Our proposed method demonstrated higher 

accuracy than the state-of-the-art spline, D. Demons or PDE-

based methods. Moreover, the computational efficiency of 

our method was better than PDE-based method. The proposed 

method can be useful for handling large deformable 

registration of brain images in various brain imaging 

applications. 
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