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Abstract— Since stress contributes to a broad range of mental
and physical health problems, the objective assessment of stress
is essential for behavioral and physiological studies. Although
several studies have evaluated stress levels in controlled settings,
objective stress assessment in everyday settings is still largely
under-explored due to challenges arising from confounding
contextual factors and limited adherence for self-reports. In
this paper, we explore the objective prediction of stress levels
in everyday settings based on heart rate (HR) and heart
rate variability (HRV) captured via low-cost and easy-to-wear
photoplethysmography (PPG) sensors that are widely available
on newer smart wearable devices. We present a layered system
architecture for personalized stress monitoring that supports
a tunable collection of data samples for labeling, and present
a method for selecting informative samples from the stream
of real-time data for labeling. We captured the stress levels of
fourteen volunteers through self-reported questionnaires over
periods of between 1-3 months, and explored binary stress
detection based on HR and HRV using Machine Learning
methods. We observe promising preliminary results given that
the dataset is collected in the challenging environments of
everyday settings. The binary stress detector is fairly accurate
and can detect stressful vs non-stressful samples with a macro-
F1 score of up to %76. Our study lays the groundwork for more
sophisticated labeling strategies that generate context-aware,
personalized models that will empower health professionals to
provide personalized interventions.

I. INTRODUCTION

Stress can contribute to illness through its direct phys-
iological effects or indirectly through maladaptive health
behaviors (e.g., smoking, poor eating or sleeping habits) [1].
It is therefore critical to motivate people to adjust their
behavior and lifestyle and introduce appropriate strategies
to achieve a better stress balance before an increased level
of stress results in serious health conditions [2].

The increasing availability of wearables, interconnected
devices capable of acquiring high-quality biosignals, opens
important opportunities for advanced machine learning-
enabled health monitoring and intervention applications [3],
[4]. Recent literature [5] demonstrates that it is indeed
possible to objectively detect stress by analyzing biological
signals. However, existing objective stress detection frame-
works are designed for controlled settings, where data is
recorded while users are in a set of predefined physical
states or performing certain activities (e.g. sitting, lying
down, running). On the other hand, stress detection needs

This work was partially supported by NSF Smart and Connected Com-
munities (S&CC) grant CNS-1831918.

to be performed in everyday settings, where subjects are
engaged in their normal daily activities and routines. Every-
day settings pose inherent challenges for stress monitoring,
including: real-time collection and analysis of data; the lower
quality of signals due to motion and noise artifacts (MNAs);
and difficulties in collecting self-reports due to limited user
adherence [5], [6]. Furthermore, personalization of stress
monitoring in everyday settings raises additional challenges:
features may emerge that are specific to the user’s character-
istics, behavioral patterns, physiology and context, as well
as sensor setup/configuration, thus presenting a much higher
degree of variations from one person to another compared to
controlled settings. These differences can result in degrading
the performance of general classifiers in everyday settings.

Since effective everyday stress monitoring and interven-
tion must be personalized and context-aware, the underlying
ML (Machine Learning) core needs to be adapted to match
the stream of data generated by the user. It is important
to note that personalized classifiers often outperform those
trained using data from the general population even in
idealized settings [5]. These classifiers depend on labels
generated from subjects in-the-moment to accurately record
instances of stress. However, users may not respond in a
timely or interactive manner, resulting in a trade-off between
the number of labels provided by the subjects versus the
accuracy of the predictive model. This trade-off creates the
need for a smart label query strategy that we use to explore
real-time stress detection based on wearable data in every
day settings.

The key contributions of this paper are:
• We architect a three-tier system for the collection and
real-time analysis of biosignals labeled using self-reports.
The system is composed of wearable sensors, a smartphone
serving as a gateway, and a cloud server. We discuss system-
level challenges influencing data acquisition capabilities.
•We develop a smart strategy to obtain labels for an adequate
number of samples to proportionally represent the entire data
from each user while capturing less overlapping regions of
the feature space.
• We develop a machine learning based stress predictor. We
map the stress labels into binary stressed (1) and not stressed
(0), and then train classification methods using these labels.
• We capture the stress levels of fourteen volunteers through
self-reported questionnaires over periods of between 1-3
months, and evaluate our binary stress detection based on
HR and HRV. Our classifiers are able to identify the binary
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Fig. 1. Overview of the system architecture.

classes with an F1 score up to 76%. We also analyze the
effect of personalization, and show how the stress detection
performance improves over time, as we collect more labels
from a subject and use those in the training process.

The rest of the paper is organized as follows. Section II
describes the system architecture we used for data collection,
and the proposed strategy for label collection in everyday
settings. Section III describes the classification methods we
used for detecting stress. Section IV presents our analysis
and results on stress detection. Section V concludes the paper
with a summary and directions for future work.

II. SYSTEM MODEL AND DATA COLLECTION

The ultimate goal of data collection is to train a personal-
ized classifier for stress detection based on biosignals (PPG).
One of the key challenges in collecting such datasets in
everyday settings is the interaction with the users, as sending
queries for labeling too often may overwhelm the users and
may also lead to unnecessary data collection.

To enable real-time interaction with the user while min-
imizing resource usage, a layered design is necessary. The
sensor layer should collect the raw signals, while the cloud
layer processes the data, determines the quality of the signals,
performs feature extraction and other computationally inten-
sive and power consuming tasks. We also have to provide
users with an interface to input their labels and build a
communication path between these layers. In this section,
we present our proposed solution for these requirements.

The experimental procedures involving human subjects
described in this paper were approved by the Institutional
Review Board (IRB) at UC Irvine.

A. System Architecture

Figure 1 outlines the system we developed to acquire the
real-time dataset associating self-reported stress ratings from
users to biosignals from wearable devices. We use a 3-tier
architecture composed of a wearable device (sensor layer),
a smartphone (edge layer), and a remote cloud server (cloud
layer) working to collect and process the data, as described
below.

1) Sensor Layer: The wearable platforms acquire and
transmit raw physiological (PPG) and Movements (Ac-
celerometer, Gyroscope and Gravity) signals. We used Sam-
sung Gear Sport smartwatches and developed a service
running on Tizen operating system to collect raw PPG and
movement signals. The sampling frequency of all the above
mentioned signals is 20Hz. The watch can send the data
directly to the cloud layer (if connected to a local Wi-Fi), or
to the smartphone via Bluetooth. The raw signal acquisition
application includes two services and a user interface (UI).
The first service collects the sensor data at a constant rate
(once every 15 minutes) and duration (2-minutes intervals)
and sends it to the cloud. If the service fails to send the
data to the cloud immediately, the data will be stored on the
watch and transferred to the server at a later time. The UI is
a simple app installed on the watch for restarting these two
services.

2) Cloud Layer: A cloud web-server receives the data
samples from the watch and processes them. Based on the
observed features of each incoming sample, an internal logic
(described later) determines whether it needs to ask users for
a label or not. The responses from users are transferred to
the cloud and stored in the database.

3) Edge Layer: We developed a smartphone app that asks
the participants for labels through an Ecological Momentary
Assessment (EMA). The EMA is triggered by the cloud for
a portion of samples and when triggered, a push notification
is displayed on the phone that asks the participant about their
stress levels and recent physical activity or state (e.g., sitting,
standing, etc.). The stress levels in the EMA are not at all,
a little bit, some, a lot, and extremely.

The edge-cloud connection is established through the In-
ternet on the smartphone. In addition, the watch is connected
to the smartphone using Bluetooth Low Energy (BLE). In
order to send the collected data to the cloud, the watch
proxies the connected phone’s Internet connection through
BLE. This setting is energy efficient, and thus suitable for
everyday setting applications. This is a back up connection
and takes effect when the watch is not directly connected to
the Wi-Fi.

B. Data Labeling

The system needs to parsimoniously trigger the EMA to
collect labels to build a meaningful dataset as quickly as
possible without imposing excessive burden on the user.
Therefore, we devised a selection method to select infor-
mative samples to be labeled by the user. However, before
applying the selection method, the raw signals need to be
pre-processed for extracting the corresponding features.

1) Data Cleaning and Feature Extraction: When a raw
PPG sample is received at the cloud, we first filter the raw
signal to clean up the high and low frequency noises. We
apply a Butterworth band-pass filter of order 3, with cut off
frequencies set at (0.7Hz, 3.5Hz), corresponding to 42bpm
and 210bpm) respectively. Then, we pass the signal through
a moving average filter and at the end apply a peak detector
on it. Using the peak points of the filtered signal, we extract
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TABLE I
NUMBER OF SAMPLES AND LABELS COLLECTED FROM EACH SUBJECT

Subject # samples total labels used labels

S01 4,580 228 217
S02 2,164 101 92
S03 1,764 67 42
S04 2,580 56 53
S05 2,267 68 59
S06 17,552 376 370
S07 10,087 105 101
S08 2,752 96 93
S09 1,236 53 50
S10 7,910 119 104
S11 2,555 73 60
S12 1,2296 956 942
S13 3,738 47 45
S14 1,332 61 55

thirteen features from each sample (2 minutes of data). These
features are: BPM, IBI, SDNN, SDSD, RMSSD, pNN20,
pNN50, MAD, SD1, SD2, S, SD1/SD2, and BR1. We use
these features for further processing and decision making.

2) Strategy for Labelling Selected Data: Data collection
consists of two phases:

Initial Phase: In order to get an initial estimate of the
distribution of samples in the sample space, we start the
procedure by observation. For the first N samples (100
samples in our setup; ∼25 hours of wearing the watch), we
do not trigger any EMAs. At the end of this phase, we get an
estimate of the distribution of samples in the samples space.

Query Phase: For samples after the initial phase (N+1 and
above), we trigger the EMA (ask for labels) for a portion
of samples. The probability of selecting each sample to be
labeled is proportional to the number of previous samples
(unlabeled) in its neighborhood. This way, if a sample falls in
a region in which there has been a large number of unlabeled
samples, it is more likely that we ask the user for the label.
For each region after we collect sufficient number of labeled
samples, we stop collecting labels. However, the minimum
probability of triggering the EMA for a sample is P = 0.1.
This means if a sample falls in a region where there is little
or no previous samples, the probability of query is still non-
zero. This results in exploring unseen regions, as well as
regions with higher densities.

We capture the stress levels of fourteen volunteers through
self-reported questionnaires over periods of between 1-3
months. The total number of samples, along with the number
of labeled samples for each user is presented in Table I.

1BPM: Beats per Minute, Heart Rate. IBI: Inter-Beat Interval, average
time interval between two successive heart beats (called NN intervals).
SDNN: Standard Deviation of NN intervals. SDSD: Standard Deviation
of Successive Differences between adjacent NNs. RMSD: Root Mean
Square of Successive Differences between the adjacent NNs. pNN20: The
proportion of successive NNs greater than 20ms (or 50ms for pNN50).
MAD: Median Absolute Deviation of NN intervals. SD1 and SD2: Standard
Deviations of the corresponding Poincaré plot. S: Area of ellipse described
by SD1 and SD2. BR: Breathing Rate.

III. STRESS DETECTION

In this section, we explore the possibility of predicting
stressful vs non-stressful moments based on the collected
signals. We train our stress detection models on both personal
and general datasets to evaluate the performance. For stress
detection, we use several machine learning classification
algorithms such as Multi Layer Perceptron (MLP), Random
Forest (RF), k-Nearest Neighbors (kNN), Support Vector
Machine (SVM), and XGBoost. MLP is a class of feed-
forward neural networks that can be trained to do nonlinear
classification and regression tasks. RF is an ensemble learn-
ing method for classification that operates by constructing
a number of decision trees at training time and outputting
the class that is the mode of the classes of the individual
trees. kNN uses the k nearest points and takes a majority
vote to predict the class of the sample. SVM finds hyper
planes and partitions the sample space into different classes.
XGBoost is an implementation of Gradient Boosted Decision
Trees that is fast and performs well in classification tasks.
We train each of these classifiers on our dataset and analyse
their performance using machine learning methods and F1
score as the evaluation metric.

IV. RESULTS AND ANALYSIS

Detecting stress by only using PPG signals in everyday
settings is a challenging task [5]. To evaluate the validity of
our models, we perform K-Fold cross validation (K = 5). In
K-Fold Cross Validation, we split the data into K equally
sized segments (folds) and in each iteration use 1 fold for
evaluation, and the other K-1 folds for training. The data is
stratified prior to be split in K folds, to ensure each fold is
a proper representative of the whole. The ML methods we
used are introduced and explained in Section III. To evaluate
the performance of each method on our collected dataset,
we used Macro-F1 score2. The mean and standard deviation
(µ ± σ) of the F1 scores over the K folds are presented in
Table II. Based on these experiments, RF outperforms other
methods for most cases (except for the first row).

A. Personalization

The bias in the physiological data (both the signals and the
labels) can be different for personal or general datasets [5].
Therefore, we show the effect of personalization and how it
improves the prediction accuracy on our collected dataset.
To this end, we consider 3 participants from which more
data is available (subjects S06, S10, S12). In the first step,
we exclude the data from one subject (e.g. S06), train on
the data from all other subjects, then test on half of the data
from S06 (picked randomly). In the next step, in order to
personalize the model, we use the other half of data from
S06 and use it for training (along with the data from other
users), and then test it on the first half of the data from
S06. The results are reported in Table III. As can been seen
from these results, personalization improves the prediction
performance (macro-F1 score).

2F1 score is defined on each class separately. macro-F1 score is the
average of F1 scores on all the classes (two here).
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TABLE II
MEAN VALUE OF F1 SCORE FOR 5 FOLD CROSS VALIDATION (± STANDARD DEVIATION) FOR STRESS DETECTION

BASED ON PPG FEATURES, BASELINE IS ALWAYS ”NOT AT ALL” CLASS

5 fold Cross Validation, F1 Score

Binary Classes Number of Samples MLP SVM kNN RF XGBoost

a little bit (1) VS. baseline (0): (605, 143) 0.73 ± 0.06 0.66 ± 0.03 0.72 ± 0.03 0.67 ± 0.04 0.72 ± 0.04
some (1) VS. baseline (0): (299, 143) 0.70 ± 0.03 0.69 ± 0.04 0.66 ± 0.06 0.71 ± 0.05 0.70 ± 0.04

a lot or extremely (1) VS. baseline (0): (72, 143) 0.68 ± 0.06 0.69 ± 0.13 0.69 ± 0.04 0.76 ± 0.05 0.73 ± 0.09
some, a lot or extremely (1) VS.

a little bit or not at all (0): (748, 371) 0.62 ± 0.04 0.60 ± 0.04 0.59 ± 0.03 0.63 ± 0.02 0.63 ± 0.04

TABLE III
EFFECT OF PERSONALIZATION ON STRESS PREDICTION PERFORMANCE.

BEFORE AND AFTER ROWS ARE F1 SCORES BEFORE AND AFTER

PERSONALIZATION FOR EACH USER.

F1 Score on 50% of data from one user

User Personalization MLP SVM KNN RF XGB

S06: before 0.43 0.37 0.44 0.40 0.38
after 0.53 0.54 0.50 0.54 0.52

S10: before 0.58 0.63 0.60 0.612 0.60
after 0.62 0.62 0.63 0.616 0.61

S12: before 0.58 0.59 0.61 0.59 0.55
after 0.63 0.62 0.64 0.63 0.61

B. Improvement Over Size of Training Data

As we collect more labels from a user, the stress prediction
can be performed more accurately. In order to show this
process, we only use data from one user having for him a
large number of labels is available (Subject S12). We also
use random forest classifier for this experiment. We randomly
separate 100 samples and use those for testing. We use the
rest of the data in an incremental manner; first we train the
model on 100 samples only, and then increase the training
size. In each step, we test the trained model on the test data
(all from S12). The improvement of prediction performance
is presented in Figure 2. The model improves as we increase
the subject’s data size up to about 300 samples. For each
step, we repeat the process (selection of test data and training
data) 100 times, and the values in the figure show the mean
and the standard deviation of the F1 score over all these 100
experiments.

V. CONCLUSIONS AND FUTURE WORK

Collecting photoplethysmogram (PPG) signals with
enough labels collected from users in everyday settings is
a challenging task. Our study used a Samsung Gear Sport
smartwatch as a wearable device for data collection and
utilized a method to improve the labeling procedure. The data
were collected from fourteen active volunteers. We explored
the possibility of detecting stressful vs non stressful moments
(samples) using leave-samples-out validation based on PPG
signals, in everyday settings. We analyzed the improvement
of the trained classifier, as we personalize the classifier with

Fig. 2. Stress Prediction over size of training data

samples from a certain subject. The results are promising: we
achieved macro-F1 scores up to 76% for binary classification
of stressful vs non stressful samples. This motivates our
future work to utilize more advanced methods, possibly
variants of active learning, in the labeling procedure. More
informative labels will allow us to design classifiers that
can possibly detect mental health conditions of users based
on HRV from their biosignals and the type of user activity
– promising to provide valuable tools for mental health
professionals to better diagnose and treat stress and anxiety
in a personalized way.
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