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Abstract— Deep brain nuclei are closely related to the 
pathogenesis of neurodegenerative diseases. Automatic 
segmentation for brain nuclei plays a significant role in aging 
and disease-related assessment. Quantitative susceptibility 
mapping (QSM), as a novel MRI imaging technique, attracts 
increasing attention in deep gray matter (DGM) nuclei-related 
research and diagnosis. This paper proposes DeepQSMSeg, a 
deep learning-based end-to-end tool, to segment five pairs of 
DGM structures from QSM images. The proposed model is 
based on a 3D encoder-decoder fully convolutional neural 
network. For concentrating network on the target regions, 
spatial and channel attention modules are adopted in both 
encoder and decoder stages. Dice loss is combined with focal loss 
to alleviate the imbalance of ROI classes. The result shows that 
our method can segment DGM structures from QSM images 
precisely, rapidly and reliably. Comparing with ground truth, 
the average Dice coefficient for all ROIs in the test dataset 
achieved 0.872±0.053, and Hausdorff distance was 2.644±2.917 
mm. Finally, an age-related susceptibility development model 
was used to confirm the reliability of DeepQSMSeg in aging and 
disease-related studies. 

 
Clinical Relevance—Accurate and automatic segmentation 

tool for sub-cortical regions in QSM can significantly alleviate 
the pressure of radiologists. It can also accelerate the progress of 
related research and clinical translation. 

I. INTRODUCTION 

Quantifying tissue magnetic susceptibility using MRI 
provides a noninvasive method to measure brain tissue 
components related to iron. This is attributed to the 
Quantitative Susceptibility Mapping (QSM) imaging 
technique which is sensitive to the spatial variations of 
molecular and cellular components that exhibit different 
magnetic susceptibility characteristics. In the human brain, 
iron is primarily located in the deep gray matter (DGM) nuclei 
[1]. DGMs are crucially involved in brain learning, memory 
and cognition functions [2]. Excessive iron overload in DGM 
nuclei has been reported in numerous neurodegenerative 
diseases such as Parkinson's disease (PD), Alzheimer's disease 
(AD) and multiple sclerosis (MS) [3], [4]. Thus, QSM 
increasingly attracts attention in the researches that are 
focusing on iron distributions in DGMs. Segmentation for 
DGM nuclei in QSM is crucial for brain iron-related studies. 
However, existing DGM nucleus segmentation based on QSM 
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is rare. Most reported works are based on manual or atlas-
based segmentation. 

Very recently, a few segmentation methods for QSM in 
DGM nuclei are reported, which can be summarized into two 
categories: atlas-based methods and learning-based methods. 
In documentation [5], atlas-based segmentation pipelines were 
used to segment brain DGM nuclei. These methods mainly 
involved template generation, subject registration and label 
propagation. This kind of method requires a series of nontrivial 
and computationally expensive operations. The performance 
is highly sensitive with data variation (e.g., contrast difference 
and scanner parameter settings) between atlas and subjects. 
The authors in the study [6] proposed a 2-D fully convolutional 
network to segment DGM structures from QSM. The 2-D 
network cannot capture the inter-slices spatial correlation, 
which is crucial in pixel-level volumetric image segmentation. 
Besides, it only involved manually selected slices containing 
DGM structures for training and testing. This segmentation is 
thus not fully automatic. Chai et al. proposed a volumetric 
double branch encoder-decoder model that used paired T1 and 
QSM data as input [7]. However, it still cannot handle the 
foreground imbalance problem, limiting the increase in 
segmentation accuracy. Therefore, an automatic, accurate, 
robust and efficient segmentation method for QSM is in urgent 
need to depict DGM structures. 

In the proposed work, we devised a deep learning-based 
sub-cortical nucleus segmentation tool for QSM, named 
DeepQSMSeg. Our segmentation backbone is a one-stage 3D 
encoder-decoder fully convolutional network (FCN). Most of 
the target structures are of small size, which makes the 
foreground and background voxels imbalanced. We thus 
adopted attention modules into the network and supervised the 
training process using both dice loss and focal loss [8]. 
Inspired by [9], we combine voxel attention and channel 
attention into both encoder and decoder stages in our network 
to focus on the target structures. Due to the anisotropic nature 
of our dataset, anisotropic convolution is adopted to reduce the 
model parameters and accelerate the model inference. For 
testing, one QSM volume was segmented in 2.600±0.018s. 5-
fold cross validation was performed to evaluate the method's 
performance. Average Dice score coefficient (DSC) for DGM 
structures achieved 0.872±0.053 and Hausdorff distance was 
2.644±2.917 mm. We then computed average susceptibility 
values in each DGM ROI using segmentation masks and fitted 
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the QSM values in each ROI using the susceptibility age 
development model. The curves fitted using ground truth and 
DeepQSMSeg were quite close and showed perfect 
consistency with previous age development study [10], which 
validates the feasibility of DeepQSMSeg in clinical and 
research usage. DeepQSMSeg can be easily embedded into 
diagnosis procedures, thus alleviating the pressure of 
radiologists and accelerating clinical translation progress. 

II. MATERIAL AND METHODS 

A. Dataset construction 

Data acquisition. Total 631 subjects, including 338 normal 
controls (NC) and 293 PD patients, were involved in data 
acquisition. All participants were scanned using a multi-echo 
3D gradient echo (GRE) sequence: repetition time = 33.7 ms; 
first echo time/spacing/eighth echo time = 4.556 ms/3.648 
ms/ 30.092 ms; flip angle = 20°; field of view =240×240 mm2; 
matrix = 416×384; slice thickness 2 mm; slice gap = 0 mm.  
QSM reconstruction. QSM image reconstruction was 
completed using Susceptibility Tensor Imaging Suite V3.0 
software package to compute the magnetic susceptibility from 
GRE phase images. The raw phase was unwrapped using 
Laplacian-based phase unwrapping method and the 
normalized background phase was removed with the 
V_SHARP method. The final susceptibility map was 
calculated by STAR-QSM algorithm [11] to acquire the final 
QSM volume. 
Training and testing dataset generation. We chose five 
pairs of DGM structures (caudate nucleus (CN), putamen 
(PUT), globus pallidus (GP), substantia nigra (SN) and red 
nucleus (RN) in both left and right hemispheres) that are most 
concerned in QSM related research works as segmentation 
targets. The manual segmentation labels were annotated by 
experienced radiologists and double-checked, which were 
used as the ground truth (GT) in both training and testing 
processes. All images and labels were resampled to 
256×256×64. The entire dataset includes 631 pairs of QSM 
images and ROI labels. The dataset was divided into five 
independent parts for training and evaluating segmentation 
accuracy with 5-fold cross validation. 

B. Network architecture 

The proposed network architecture is shown in Fig.1 (a). 
The backbone consists of an encoder and a decoder. The 
encoder aims to extract semantic features into latent space 

from QSM images and the decoder will reconstruct the 
segmentation map using latent features. The encoder consists 
of an input module and four feature extraction modules. Each 
module includes one to three volumetric anisotropic 
convolutions blocks (5×5×3) and adopts residual structure to 
reuse features and achieve fast convergence. In between 
modules, stride two convolutions (2×2×2) are used to halve the 
spatial size and double the feature channels. The decoder 
includes four feature reconstruction modules and one output 
module, which are symmetric to the encoder. The basic 
convolution blocks are similar and transpose convolutions are 
used to double the spatial size and decrease feature channels 
between modules. We adopted skip connections from encoder 
to decoder to achieve high-resolution feature maps with strong 
semantic representation. The network's output, which is 
activated by soft-max functions, consists of 11 channels (10 
ROI structures and one background class) and the resolution is 
the same as the input volume.  

Between the last two encoder stages and the first two 
decoder stages, we insert attention modules to capture the 
small target structures' semantic features. The attention 
module is adapted from CBAM [9], which can be divided into 
encoder form and decoder form. For encoder attention, 
attention modules take each stage's output directly as input. 
For decoder attention, the combined feature maps from 
encoder and decoder are first processed by convolution blocks 
and then used as input of attention modules. The attention 
module is illustrated as Fig.1 (b). It can be considered as a 
cascade of a channel-wise attention module and a spatial-wise 
attention module. Channel-wise attention exploits the inter-
channel relationship while spatial-wise attention can 
concentrate on spatial features. For channel-wise attention, 
global adaptive pooling (both max-pooling and average-
pooling) is used to extract the channel-wise feature. Then the 
channel-wise attention weight is computed via multilayer 
perceptron (MLP). For spatial-wise attention, average and 
maximum values along the channel axis are calculated and 
1×1×1 convolution is adopted to calculate the spatial-wise 
attention weight. 

C. Loss function 

Dice loss combined with voxel-wise focal loss is adopted 
to alleviate the high imbalance of classes and focus on the 
poorly classified voxels [8]. Dice loss is a region-based loss 
derived from Dice similarity coefficient (DSC) [12]. The 
mathematical formula of dice loss is as follows: 

Figure 1. The proposed DeepQSMSeg model architecture. (a) Left part is the entire network architecture. E1 to E4 represent four feature 
extraction modules and D1 to D4 represent four feature reconstruction modules. Four attention modules are inserted between the last two encoder 
stages and the first two decoder stages. (b) Right part is attention module architecture in encoder and decoder stage that consists of concatenated 
channel-wise attention and voxel-wise attention.  
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���e_loss = 1 −
2 ∑ ���� + �

∑(�� + ��) + �
(1) 

Where �� and ��  are respectively the predicted results and 
ground truth voxels at the same position, and ϵ is the smooth 
constant. 

Although dice loss can eliminate the class imbalance class 
problem, it is still not robust enough for the severe imbalance 
situation (such as SN and RN in Fig.2). In our segmentation 
tasks, the target structures are of small size compared with the 
whole brain volume. Thus, it tends to overwhelm by the 
background voxels. Focal loss was first proposed to tackle the 
classification problem in one-stage object detection [13]. It can 
distinguish hard and easy examples and make the training 
process focus on the hard examples. Focal loss can be easily 
modified to voxel level, which can be written as: 

�����_���� = ����(��(1 − ��)� log(�� + �)) (2) 

The definition of ��, �� and ϵ are the same as (1). 
According to [8], dice loss combined with voxel-wise focal 

loss is adopted in our model to concentrate on the hard 
examples and tackle the class imbalance problem. The total 
loss is computed as: 

����_�����_���� = ����_���� + ������_���� (3) 

Where � is the hyperparameter to adjust the weight between 
dice loss and focal loss. 

D. Training and evaluating 

Transformation and augmentation were performed on the fly. 
All volumes were normalized and cropped to patches with a 
fixed size of 128×128×64 around the center. For training, 
random spatial transformations were adopted and assigned 
random parameters within a reasonable range. All images 
from normal controls and Parkinson's disease patients were 
used as the input of CNN indiscriminately. 

The proposed model was implemented using PyTorch 1.5. 
The network was trained by Adam optimizer. The initial 
learning rate is 0.01 and decayed to 1/10 in the 30th, 75th and 
300th epoch. The total number of epochs was set to 800. The 
trade-off coefficient λ in focal loss was set to 0.5. 

To evaluate the segmentation accuracy, we calculated the 
DSC and Hausdorff distance (HD) between the manual 
segmentation and predicted masks. DSC can evaluate the 
region similarity while Hausdorff distance can measure the 
segmentation boundary difference. DSC is similar to (1) but 
without the smooth constant. Hausdorff distance is defined as: 

�(�, �) = max{ℎ(�, �), ℎ(�, �)} (4) 

Where G and P are mask boundaries of ground truth and 
prediction. h(G, P) is calculated by: 

ℎ(�, �) = ���
��∈�

���
��∈�

�|�� − ��|� (5) 

E. Susceptibility development model with age 

Segmentation for DGM structures in QSM is commonly 
used as a preprocessing step for iron-related neuroimage 
studies. To further prove the feasibility of using DeepQSMSeg 
to extract susceptibility values in DGM structures, we 
computed average susceptibility values for each ROI in NC 

subjects of the test dataset using ground truth and predicted 
masks, respectively. Then we used two sets (GT & predicted) 
of susceptibility values to fit the susceptibility development 
model with age. According to [10], the susceptibility 
development model with age is as: 

� = ��1 − ���×���� + � (6) 

Where �  denotes the average susceptibility values in a 
specific ROI, age denotes the subject's age, α, β and γ denote 
the ROI specific parameters needed to be fitted. The 
susceptibility development model is fitted using the nonlinear 
least square method. 

III. RESULTS 

 

Figure. 2. Qualitative comparison between ground truth and predicted 
segmentation using different methods. The first row is ground truth, 
illustrating different ROI names and masks. The other three rows 
represent segmentation results by different methods. 

 
Fig.2 illustrates the comparison result between ground 

truth and predicted segmentation using three methods. We 
compared DeepQSMSeg with V-Net and a popular multi-atlas 
method. V-Net was implemented according to [12]. Multi-
atlas method used ten manually labeled QSM subjects as 
atlases. The registration and label fusion algorithm was 
implemented according to [14]. The three axial slices clearly 
show all the target DGM structures in the left and right 
hemispheres. It is shown that DeepQSMSeg achieved the best 
performance compared with other methods, especially in the 
small nuclei SN and RN. 

The quantitative structural consistency of each ROI 
between ground truth and predicted segmentation was 
calculated. As shown in Table1, our method provides the 
overall best performance among all methods. The average 
DSC for all target structures is 0.872±0.053 and Hausdorff 
distance is 2.644±2.917mm. Besides, our method can perform 
QSM segmentation in near-real-time (2.600±0.018s per 
volume in test dataset), which is much faster than the atlas-
based method (4131.300±79.923s). 

The structure volumes (in  mm� ) and average magnetic 
susceptibility values (in ppm) in each ROI were extracted 
based on DeepQSMSeg. As shown in Fig.3, the values 
extracted by our method are in general consistent and 
significantly correlated with those extracted using ground truth. 
The overall correlations of structure volumes and 

3678



  

susceptibility values between manual labels and our method in 
all target structures are 0.985 (p<0.001) and 0.991 (p<0.001), 
respectively. 

TABLE I.  DSC AND HD (IN MM) BETWEEN GROUND TRUTH AND 

PREDICTED SEGMENTATION OF DIFFERENT METHODS. 

 

 

Figure 3. Linear correlation of ROI volumes (left) and average 
susceptibility (right) between ground truth and predictions. 
 

Fig. 4 shows the fitted susceptibility development models 
in 5 ROIs using GT and prediction by DeepQSMSeg. We can 
see that the models fitted using ground truth and 
DeepQSMSeg are quite close. Besides, the fitted models are in 
high agreement with previous work [10]. 

 

Figure 4. Susceptibility development model with age. 

IV. CONCLUSIONS 

In the present study, we propose an accurate, automatic and 
fast DGMs structures segmentation tool for QSM, named 
DeepQSMSeg. DeepQSMSeg is adaptive for the high 
anatomical variability and target imbalance and achieves 
similar performance as manual masks, thus proves its potential 
in research and clinical usage. It can be easily embedded into 
diagnosis procedures and accelerate the progress of clinical 
translation. Since there is still a lack of QSM data in clinical 
practice, in the future, we will focus on multi-modality DGMs 
segmentation through a weakly-supervised manner to better 
suit the clinical need. 
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Methods DeepQSMSeg V-Net Multi-Atlas 

ROIs DSC HD DSC HD DSC HD  

CN 0.856 3.01 0.848 3.11 0.733 7.05 
PUT 0.882 3.02 0.873 3.32 0.817 5.30 

GP 0.892 2.88 0.887 2.68 0.860 5.14 

SN 0.843 2.61 0.833 3.23 0.816 3.99 
RN 0.889 1.70 0.880 1.76 0.845 2.19 
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