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Abstract— One of the benefits of Do-it-yourself Artificial Pan-
creas Systems (DIYAPS) over commercially available systems
is the high degree of customization possible through various
features developed by the community. This paper investigates
the impact of thirteen commonly used custom features on the
glycemic outcomes of users with type 1 diabetes. Significant
differences were observed in the group using the Automated
Microbolus, Autotune (automatic), and the Superbolus feature.
As many of the features aim to improve not only glycemic
outcomes but also reduce the burden of managing diabetes on
the user, future studies should investigate the impact of these
features on the quality of life of their users.

Clinical Relevance—This paper expands the existing knowl-
edge on the DIYAPS for people with type 1 diabetes which have
been gaining popularity among the patient population in recent
years.

I. INTRODUCTION

The improvement in accuracy and availability of diabetes
technology such as continuous glucose monitors (CGMs) has
allowed for automation of some aspects of diabetes manage-
ment [1], [2]. The integration of CGMs with insulin pumps
has allowed the creation of hybrid closed-loop systems, i.e.,
algorithms to regulate basal insulin levels to keep glucose at
a target level [1]. Nevertheless, such commercially available
systems have limited affordability, accessibility and take a
long time to develop [3]. The frustration of the commu-
nity with these limitations has created the patient-driven
#WeAreNotWaiting movement1 [4], [5]. One of the outcomes
of this movement was the creation of Do-it-yourself Artificial
Pancreas Systems (DIYAPS), which involves the “hacking”
of commercially available devices such as insulin pumps
and CGMs and utilizes microcomputers or smartphones
to run custom open-source algorithms, resulting in better
accessibility of artificial pancreas systems [6]. The OPEN
Project (Outcomes of Patients’ Evidence With Novel, Do-It-
Yourself Artificial Pancreas Technology) is an EU-sponsored
project investigating the use of DIYAPS in a real-world
setting2 [3].

Another advantage of using DIYAPS is the availability
of a large variety of custom features and personalization
options the user can choose from [6]. These features aim
to address some of the challenges associated with diabetes
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management, such as achieving stable blood glucose levels
or reducing the burden of the condition on the user. This
paper investigates whether several custom features of three
popular DIYAPS systems (OpenAPS3, AndroidAPS4, and
Loop (iOS)5) have an impact on the glycemic outcomes and
diabetes management of their users. This paper first describes
the outcome metrics used in diabetes management, which are
then used to determine whether the use of various features
leads to better outcomes, and the results are presented.

II. BACKGROUND

Type 1 diabetes (T1D) is an autoimmune condition caused
by the immune destruction of pancreatic insulin-producing
beta cells [7]. As insulin is the only glucose-lowering hor-
mone in the human body, T1D results in chronic hyper-
glycemia (>180 mg/dL), and people with diabetes (PwD)
rely on a lifelong administration of exogenous insulin [8].
Therefore, the treatment goals for T1D focus on keeping glu-
cose levels as close to those of individuals without diabetes
while also avoiding hypoglycemia (<70 mg/dL) [9].

Achieving glycemic outcomes within the optimal range
helps to avoid acute complications such as severe hypo-
glycemia or diabetic ketoacidosis [8] as well as reduce
the risk of long-term complications [11]. The current gold
standard for assessing glycemic outcomes is the measure-
ment of glycated hemoglobin (HbA1c) [12], [13]. However,
the widespread use of CGMs has allowed the definition
of additional diabetes management metrics which do not
require a laboratory test [14]. As the HbA1c value reflects the
retrospective long-term mean blood glucose value, the mean
sensor glucose value recorded continuously by the CGM is
a relevant factor in diabetes management [14]. Furthermore,
several papers propose a function of the mean sensor glucose
value to estimate the HbA1c based on the mean blood
glucose, i.e., the estimated HbA1c (eHbA1c) or the Glucose
Management Indicator (GMI) [15], [16]. Time in range
(TIR), the time below the range, and time above the range are
other key indicators of diabetes management as they provide
more information about the day-to-day glycemic excursions
[9], [14], [17], [18]. Other studies have also pointed to
glucose variability as a more meaningful indicator for long-
term complications and mortality than the mean glucose
level, resulting in the definition of the coefficient of variation
(CoV) of sensor glucose as an essential metric [19].

3https://openaps.org/
4https://androidaps.readthedocs.io/
5https://loopkit.github.io/loopdocs/
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The American Diabetes Association (ADA) recommends
an HbA1c of <7% / 53 mmol/mol for most adults with T1D
[9], and lower targets should only be set if hypoglycemia can
be avoided [10]. Studies showing the relationship between
mean sensor glucose and HbA1c recommend mean sensor
glucose of 154 mg/dL to achieve the HbA1c value of
7% [20]. For the majority of PwD, the TIR of 70% is
recommended [18]. It is also noted that every further 5%
increase in TIR has a clinically relevant impact on reducing
the risk of long-term complications [17]. Time below 70
mg/dL should not exceed 4%, of which only 1% should be
below 54 mg/dL. Time above 180 mg/dL should be below
25%, of which only 5% should be above 250 mg/dL. The
CoV should be ≤ 36% [9], [19]. Furthermore, the medical
community recognizes the trade-off between stringent care to
achieve optimal care and the burden of diabetes management
on the PwD, and considers the satisfaction of the PwD with
their treatment a vital treatment goal [21], [22].

Despite advances in diabetes technology, only 21% of
adults and 17% of youth achieve optimal glycemic outcomes
[23], [24]. Previous studies have demonstrated the effec-
tiveness of DIYAPS in reducing HbA1c values and time in
hypoglycemia, as well as increasing time in range [25], [26],
[27]. Benefits of DIYAPS span beyond just improved clinical
outcomes. One of the benefits of DIYAPS is the high level
of customization and features that the user can enable. While
the value of DIYAPS has been demonstrated, there is limited
research into the settings of these systems which lead to the
best outcomes.

III. MATERIALS AND METHODS

A. Materials

The DIYAPS consists of a CGM, an insulin pump, and
a minicomputer or smartphone app. Depending on their
smartphone device, users can choose between three systems:
AndroidAPS, Loop (iOS), or OpenAPS running on an extra
minicomputer (e.g. Raspberry Pi). These three components
form a control loop that aims to keep the users’ glucose
levels at a target level by continuously providing the required
insulin as calculated by the algorithm based on the CGM
data. The OPEN Project regularly collects data from users
of DIYAPS through online campaigns. Participants are also
invited to participate in surveys about their demographics,
clinical outcomes, and quality of life. The cohort consists
of 74 users and includes adults (n = 66), and children and
adolescents (n = 8), with the age range of 5 to 78. 41% of the
participants were female (n = 30), 59% were male (n = 44).
The mean age at diagnosis was 14.1 years (sd = 8.4 years),
and the mean years lived with diabetes was 24 years (sd =
13.1 years). All of the 74 users have reported the use of at
least one custom feature, and 70% of users have reported the
use of at least three features.

B. Methods

Based on the outcome metrics prioritized by the ADA,
nine metrics were chosen to assess the level of diabetes man-
agement. Eight of the metrics were calculated based on the

donated CGM data of the users: sensor glucose, coefficient
of variation of blood glucose, glucose management indicator
(GMI), time in range (70-180 mg/dL), time below 70 mg/dL
(mild hypoglycemia), time below 54 mg/dL (severe hypo-
glycemia), time above 180 mg/dL (mild hyperglycemia),
time above 250 mg/dL (severe hyperglycemia). The ninth
metric was the self-reported most recent HbA1c value, which
was taken from the survey.

The distribution of each metric was checked using the
Shapiro-Wilk test to establish which significance test to use.
The coefficient of variation and the most recent HbA1c value
were the metrics that followed a normal distribution. There-
fore for these metrics, the analysis of variance test (ANOVA)
was used. For the other metrics, the non-parametric Kruskal-
Wallis test was used. This test was chosen as it allows for
small sample sizes (≥ 5). In this paper, “users” refers to
the participants who have stated that they use this particular
feature, while “non-users” refers to participants who do
not use the feature. The number of users for each feature
and the availability of the features across the three systems
are presented in Table I. The significance test was then
performed to establish whether there was any difference
between the outcomes of the “user” group compared with the
“non-user” group. As significance level we chose α = 0.05.
As most of the metrics used in this paper do not follow the
normal distribution, all significant findings are reported as
the median value, followed by the range of values.

IV. RESULTS

Across the nine outcome metrics, no significant differences
were observed between users and non-users of the features
Temporary Targets, Profile Switches, Super Micro Bolus,
Unannounced Meals, Automation, Autosens, Remote Fol-
lower, Autotune (manual), Manual Overrides, and Autobolus.
The three features, Automated Microbolus, Autotune (auto-
matic), and Superbolus, have shown a significant difference
in outcomes of users of the features versus non-users for
at least one of the outcome metrics and are summarized in
Tables II, III and IV, respectively.

V. DISCUSSION

The management of T1D is a daily burden that heavily
affects the quality of life of the PwD. Diabetes technology,
such as DIYAPS, is crucial to achieving optimal blood
glucose levels, as 95% of diabetes management is done
by the person with diabetes [22]. The large variety of
features available for DIYAPS allow the user to customize
the system according to their body’s needs and their indi-
vidual preferences. While users of these systems can ask
for advice in online communities, no previous studies have
looked at the outcomes of users using different features. The
study examines thirteen custom features available across the
three DIYAPS (OpenAPS, AndroidAPS and Loop (iOS)).
Significant differences were found for three of the thirteen
features: Automated Microbolus, Autotune (automatic) and
the Superbolus.
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TABLE I
OVERVIEW OF THE 13 CUSTOM FEATURES INVESTIGATED, INCLUDING THEIR USE AND AVAILABILITY ACROSS THE THREE SYSTEMS

Feature
Number
of users

(% of cohort)
DIYAPS Availability Feature Description

Remote Follower 40 (54%) AndroidAPS, OpenAPS,
Loop (iOS)

Allows the caregiver of the DIYAPS user to remotely monitor the glucose and
insulin levels of the user through an app

Autotune manual 38 (51%) AndroidAPS, OpenAPS,
Loop (iOS)

Adjusts basal rates, insulin sensitivity ratios and carbohydrate ratios whenever
triggered by the user

Temporary Targets 54 (73%) AndroidAPS, OpenAPS Change the target blood glucose level for a specified period of time e.g. a
higher target during physical exercise

Profile Switches 33 (45%) AndroidAPS, OpenAPS Allows the creation of multiple insulin configurations (”profiles”) for various
occasions, e.g. weekday, weekend, exam period etc.

Super Micro Bolus 50 (68%) AndroidAPS, OpenAPS Tiny amounts of bolus administered before a meal, combined with reduced
basal insulin after a meal to better match the mealtime peak insulin timings

Unannounced Meals 43 (58%) AndroidAPS, OpenAPS Aims to detect rapid increases in blood glucose levels due to intake of
carbohydrates and automatically correcting it

Automation 27 (36%) AndroidAPS, OpenAPS Automating the change of settings based on specified if statements e.g. if my
location is detected to be at the gym, set my target to higher

Autosens 44 (59%) AndroidAPS, OpenAPS Adjusts the insulin sensitivity ratio in real time, if it detects that a user is
reacting reacting more or less sensitively to insulin than usual

Manual Overrides 21 ( 28%) Loop (iOS) Allows the user to temporarily change their insulin requirements as a
percentage, for basal rates and for boluses

Autobolus 5 (7%) Loop (iOS) A preset bolus dose to be administered at a particular time

Automated Microbolus 11 (15%) Loop (iOS) Small amounts of correction bolus administered to supplement the basal rate

Autotune automatic 6 (8%) OpenAPS Automatically adjusts basal rates, insulin sensitivity ratios and carbohydrate
ratios over time

Superbolus 15 (20%) AndroidAPS
A method of administering meal boluses which accounts for the carbohydrate
content of the meal as well as the basal rate for the hours after the meal in
order to reduce spikes in glucose levels

TABLE II
DIFFERENCES IN THE OUTCOMES OF USERS OF AUTOMATED

MICROBOLUS VERSUS NON-USERS

Outcome Metric p-value Users
(median (range))

Non-users
(median (range))

Mean Sensor
Glucose (mg/dL) 0.0231 121.75

(101.65-147.6)
137.05
(102.97-206.65)

Glucose
Management
Indicator (%)

0.0231 6.22
(5.74-6.84)

6.59
(5.77-8.26)

Time spent below
70 mg/dL (%) 0.0395 3.61

(2.24-13.84)
2.88
(0.07-9.12)

Time spent above
180 mg/dL (%) 0.0167 9.63

(1.33-24.0)
16.65
(0.83-70.48)

Time spent above
250 mg/dL (%) 0.0381 0.75

(0.03-4.9)
2.82
(0.01-21.9)

TABLE III
DIFFERENCES IN THE OUTCOMES OF USERS OF AUTOTUNE

(AUTOMATIC) VERSUS NON-USERS

Outcome Metric p-value Users
(median (range))

Non-users
(median (range))

Most recent HbA1c
reading (mmol/mol) 0.0059 67.5

62.0-74.0
58.0
36.0-75.0

TABLE IV
DIFFERENCES IN THE OUTCOMES OF USERS OF SUPERBOLUS VERSUS

NON-USERS

Outcome Metric p-value Users
(median (range))

Non-users
(median (range))

Coefficient of
Variation (%) 0.0457 37.4

(23.54-51.51)
33.62
(22.64-43.84)

Time below
70 mg/dL (%) 0.0035 6.42

(1.41-9.12)
2.81
(0.07-13.84)

Time below
54 mg/dL (%) 0.0027 1.07

(0.14-3.56)
0.43
(0.01-3.58)

a) Automated Microbolus on Loop (iOS): The users of
the automated microbolus feature experienced lower mean
glucose and GMI, lower time in hyperglycemia (time above
180 mg/dL and time above 250mg/dL) but at the expense of
increased time below 70 mg/dL. The ADA guidelines state
that lower mean sensor glucose can lead to a smaller risk
for microvascular complications. It is, however, important to
note that both groups fall in the advised range. Furthermore,
the ADA recommends lower average glucose values only
if it does not increase the risk of hypoglycemia [10]. This
study has shown that the users of the Automated Microbolus
feature do achieve lower mean sensor glucose, but the time
spent in hypoglycemia is significantly higher than that of
non-users of this feature.
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b) Autotune (automatic) on OpenAPS: While there
were no significant differences in the outcome metrics calcu-
lated based on the donated sensor data, there was a significant
difference in the self-reported most recent HbA1c value. The
users’ HbA1c level lies above the ADA recommended level
(< 53 mmol/mol). However, it is important to note that only
six users reported the use of this feature.

c) Superbolus on AndroidAPS: This study shows that
the use of the Superbolus feature increased the glucose
variability of the user, as well as their time in hypoglycemia,
beyond the guidelines recommended by the ADA.

A. Limitations and Future Work

While only three of these features have shown significance
in the outcomes, many more conclusions can be deducted.
Several features aim to reduce the burden of diabetes man-
agement on the user or their caregivers without sacrificing
good diabetes management. Therefore, it is important to
point out that several features that aim to automate parts
of diabetes management did not lead to significantly worse
outcomes for their users. For example, the unannounced
meals feature reduces the burden on the user to calculate
and input meal bolus before a meal based on the amount of
carbohydrates they are consuming. This study looked at 74
patients, of which 43 used the unannounced meal feature.
The lack of significant differences between the two groups
shows the effectiveness of this feature in a real-world setting.
The use of DIYAPS has benefits beyond just glycemic
outcomes. While this study has investigated glycemic out-
comes, further studies need to investigate the impact on
users’ quality of life for various features. Furthermore, due
to the susceptibility to type II errors of the non-parametric
statistical tests used in this study, more data is needed to
make reliable statements about the features where we could
not reject the null hypothesis.
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