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Abstract— The majority of studies for automatic epileptic
seizure (ictal) detection are based on electroencephalogram
(EEG) data, but electrocardiogram (ECG) presents a simpler
and more wearable alternative for long-term ambulatory mon-
itoring. To assess the performance of EEG and ECG signals,
AI systems offer a promising way forward for developing high
performing models in securing both a reasonable sensitivity
and specificity. There are crucial needs for these AI systems
to be developed with more clinical relevance and inference
generalization. In this work, we implement an ECG-specific
convolutional neural network (CNN) model with residual layers
and an EEG-specific convolutional long short-term memory
(ConvLSTM) model. We trained, validated, and tested these
models on a publicly accessible Temple University Hospital
(TUH) dataset for reproducibility and performed a non-patient-
specific inference-only test on patient EEG and ECG data of
The Royal Prince Alfred Hospital (RPAH) in Sydney, Australia.
We selected 31 adult patients to balance groups with the
following seizure types: generalized, frontal, frontotemporal,
temporal, parietal, and unspecific focal epilepsy. Our tests on
both EEG and ECG of these patients achieve an AUC score of
0.75. Our results show ECG outperforms EEG with an average
improvement of 0.21 and 0.11 AUC score in patients with frontal
and parietal focal seizures, respectively.

Clinical relevance— Prior research has demonstrated the
value of using ECG for seizure documentation. It is believed
that specific epileptic foci (seizure origin) may involve network
inputs to the autonomic nervous system. Our result indicates
that ECG could outperform EEG for individuals with specific
seizure origin, particularly in the frontal and parietal lobes.

I. INTRODUCTION

Epilepsy affects about 1% people globally [1], and it
entails some severe psychiatric comorbidities and psycho-
social disorders, such as social exclusion and unemploy-
ment [2], [3]. Electroencephalogram (EEG) has been the
golden standard in epilepsy diagnosis and monitoring the
brain’s electrical activity. Over the past two decades, there
has been widespread use of EEG signals for seizure doc-
umentation and research into seizure forecasting [4]–[6].
Recently, several deep learning techniques achieved excellent
results using EEG for non-patient-based seizure detection
on the Temple University Hospital (TUH) EEG dataset [7].
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The disadvantage of EEG-based methods is their limited
applicability beyond clinics (in- and out-patients) due to their
wearability and comfort. There have been attempts to reduce
the number of EEG channels involved in signal processing.
One recent one is the Neureka 2020 Epilepsy Challenge that
considered channel numbers in their scoring formula. The
winner of this Challenge used a multi-view attention-gated
U-Net algorithm and achieved 12.46% sensitivity and one
false alarm per 24 hrs, using 16-channel of EEG poor in
sensitivity [8]. These results show challenges associated with
developing a high-performance EEG-based seizure detection
system with a small number of electrodes.

The authors in [9] leveraged the abundance of weak
annotations that were primarily analyzed by a mixed group
of technicians, fellows, students, and epileptologists to train
their convolutional neural network and achieved an area
under the receiver operating characteristic curve (AUC) score
of 0.78. In our recent work [10], our comprehensive solution
reached an AUC score of 0.84 using a convolutional long
short-term memory network (ConvLSTM) tested in a non-
patient-specific inference-only mode. Our EEG results in this
paper are based on the same AI system.

Compared with EEG, electrocardiography (ECG) is less
complicated, more portable and recording of ECG is rou-
tinely used in clinical settings [11]. However, algorithms
using ECG signals for non-patient-based seizure detection
are limited. Heart-rate variability (HRV) might aid the iden-
tification of seizure onset, for instance, reported for children
with temporal-lobe epilepsy [12]–[15]. Such studies reflect
the influence of seizures on the brain network inputs to the
autonomic nervous system [16].

The most promising works using ECG have focused
on seizure prediction (early seizure detection) [17], [18].
However, there has been little focus on using the ECG
signal for seizure detection, and the performance is not
comparable with using multiple EEG channels. The support
vector machine (SVM) method was recently applied to ECG
to detect temporal seizures, achieving a 70% sensitivity and
an average of 2.11 false alarms per hour. This study focused
on seizures originating from the temporal lobe yet tested only
on a small group (11) of patients.

In this paper, we perform generalized non-patient-specific
inference-only tests on 31 adult patients to investigate the
performance of our seizure detection models developed sep-
arately for EEG and ECG analysis. The main contributions
of this paper are in the following:

• Introduce a residual convolutional neural network
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(CNN) model, inspired by [19], for seizure detection
using ECG data and achieve a promising result relative
to a full set of 19 EEG electrodes. Note that the ECG
data is collected alongside the EEG.

• A generalized and non-patient-specific inference-only
test using both EEG and ECG modalities. In this study,
we train, validate and test two separate deep learning
models on a publicly available US-based TUH dataset
and run it in inference-only mode on an Australia-based
RPAH dataset.

• We have also explained our results on ECG and
demonstrate a potential influence of specific epileptic
foci (seizure origin) on the autonomic nervous system
(ANS).

To the best of our knowledge, this is the first inference-
only study using ECG designed for clinical utility which
explore the potentials influence of seizure origin on the ECG
outcome.

We organize the remainder of the paper as follows. The
next section discusses the features of the datasets used in
the models. Section III introduces the proposed method for
automatic seizure detection. Lastly, we discuss the results
and conclude the paper.

II. DATASET

Tables I and II summarize the two datasets used in this
work. The world’s largest open database Temple University
Hospital (TUH) seizure corpus [7] was used for training the
deep learning models. The TUH dataset consists of both EEG
and ECG data information, which we separately used. There
are 1,095 sessions with 540 patients (174 participants with
seizures) in the training set, and 228 sessions with 46 patients
(36 patient with seizures) in the development set. During
training, we randomly split the TUH training dataset into
80%, 20% for training and validation, respectively, and test
on the TUH development dataset. To examine our clinical
utility, we limit the test of our models to inference-only mode
on the the Royal Prince Alfred Hospital (RPAH) dataset.

We selected 31 adults with epilepsy from a local large
dataset that we have access to, from the RPAH. We reported
a comprehensive use of this dataset in an internationally
generalized inference-only test using EEG sets in [10].
No training was performed on the sets we conducted our
inference tests (in this case RPAH EEG and ECG sets).
The positive (seizure) samples are extracted from ictal pe-
riod (from onset to end) into 12-second windows and the
remainder of ictal period that is less than 12 seconds long is
discarded. A similar process is applied to negative samples
that are extracted from non-seizure periods.

The interaction between seizures and the autonomic ner-
vous system (ANS) is complex one. We selected six most
common seizure types, namely generalized, frontal, fron-
totemporal, temporal, parietal and unspecified focal epilepsy.
To explore the potential connection between the seizure foci
and the ANS, we included participants with specific seizure
types. As shown in Table II, the total recording length and

TABLE I: Summary of the TUH datasets with ECG

TUH dataset attribute Train Dev

Files 4141 953
Sessions 1095 228
Patients 540 46
Files with seizures 746 258
Sessions with seizures 301 94
Patients with seizures 174 36
Number of seizures 2129 650
Background duration (hours) 669.3 149.2
Seizure duration (hours) 43.0 14.6
Total duration (hours) 712.3 163.8

mean seizure duration are 2495.7 hours and 97.2 seconds,
respectively.

III. METHOD

A. Pre-processing

Heart rate variability (HRV) [20] is one of the most
common features extracted from ECG for seizure detection.
However, for deep learning techniques, HRV is unsuitable
as it is itself a method to engineer features from ECG and
could leave out helpful information in the process. We aim
to leverage a convolutional neural network (CNN) capability
to inherently extract relevant information from ECG signals
without any feature engineering. Although raw ECG signals
can be directly fed into the neural network, the lack of
explicit frequency information makes it difficult for the net-
work to extract essential features. In this work, we used the
short-time Fourier transform (STFT) to translate 12 second
segments of raw ECG signals into spectrum’s as input to
the neural network. To address differences in the recording
sample rates, we re-sampled all ECG signals to 250 Hz,
therefore, a 12-s ECG signal has a 3,000 samples. We used
a window length of 250 (or 1 s) and 50% overlapping
when doing the STFT so that the data shape would become
(23× 1× 126). The DC component in the spectrogram was
removed before feeding to the neural network so that the
final data shape would become (23× 1× 125).

B. Machine learning

The network was trained with the Training set of the TUH
dataset only and tested on the Development set of the TUH
dataset. Then we used the trained network to test on 31
participants from the RPAH dataset directly.

CNN-residual network is a widely used method for com-
puter vision [21]. Recently, a deep network based on CNN-
residual blocks achieved excellent performance on cardio-
vascular disease classification problems using 12-lead ECG
channels [19]. In this work, we fine-tune the CNN-residual
network to efficiently and accurately use ECG signals for the
seizure detection task. As shown in Fig. 2, the input was first
fed into a batch normalization layer which ensures the input
data has zero mean and unit variance to reduce the internal
covariate shift [22]. The ReLu activation function was used
inside the network [23], and the kernel size for all blocks was
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Fig. 1: Receiver operating characteristic (ROC) curves for the seizure detection task. TUH-TUH-EEG and TUH-TUH-ECG
represent the model trained on the training set of the TUH dataset and tested on the development set of the TUH
dataset (that contains ECG data) using 19 EEG electrodes and 1 ECG electrode, respectively; TUH-RPA-EEG and
TUH-RPA-ECG represent the model trained on the training set of the TUH dataset and tested on the 31 participants
from the RPAH dataset using 19 EEG electrodes and 1 ECG electrode, respectively.

TABLE II: Summary of the 31 participants’ information from the RPAH dataset and post test results (inference only)

Patient Gender Age SN Origin Severity of motor activity RD (h) Mean SD (s) Range SD (s) EEG AUC ECG AUC

1 M 20 10 Generalised Moderate 86.9 13 [7.2, 17.6] 0.32 0.95
2 M 33 4 Generalised Minor 93.6 91.9 [51.2, 117.1] 0.91 0.88
3 M 22 9 Generalised Moderate 8.0 76.4 [26.2, 191.0] 0.84 0.83
4 F 41 1 Generalised Severe 57.8 47.5 [47.5, 47.5] 0.96 0.70
5 M 21 7 Generalised Moderate 71.9 423.1 [21.9, 1324.4] 0.75 0.78
6 F 22 6 Frontal Moderate 97.7 74.5 [57.1, 95.3] 0.71 0.80
7 M 39 11 Frontal Moderate 47.8 72.5 [32.1, 132.3] 0.38 0.82
8 M 38 2 Frontal Minor 16.4 43.5 [40.2, 46.7] 0.26 0.58
9 M 62 7 Frontal Severe 73.2 98.4 [40.1, 158.6] 0.33 0.48
10 M 31 7 Frontal Moderate 34.7 63 [17.4, 102.0] 0.61 0.65
11 F 51 11 Frontotemporal Severe 93.4 161.2 [92.5, 175.4] 0.89 0.84
12 M 25 8 Frontotemporal Moderate 93.0 77.5 [42.4, 154.6] 0.91 0.59
13 F 43 8 Frontotemporal Minor 90.1 178.7 [28.0, 1095.9] 0.94 0.81
14 F 22 5 Frontotemporal Minor 138.2 79.4 [62.5, 105.2] 0.83 0.92
15 M 31 11 Frontotemporal Severe 82.4 73.1 [50.8, 202.7] 0.88 0.84
16 F 58 14 Frontotemporal Moderate 68.3 102.2 [17.0, 237.7] 0.97 0.63
17 M 41 8 Temporal Minor 97.0 44 [29.9, 69.6] 0.81 0.63
18 M 39 9 Temporal Minor 91.3 67.5 [45.0, 78.1] 0.97 0.89
19 M 51 7 Temporal Minor 162.4 69.9 [13.9, 147.5] 0.83 0.84
20 F 41 14 Temporal Minor 90.2 126.5 [45.1, 719.7] 0.61 0.59
21 F 32 9 Temporal Minor 45.8 74.7 [10.9, 118.1] 0.90 0.75
22 M 32 8 Temporal Minor 92.2 67.3 [41.9, 135.0] 0.92 0.93
23 M 33 8 Temporal Minor 87.4 59.8 [41.3, 113.1] 0.65 0.77
24 M 32 9 Temporal Minor 64.4 71.4 [17.4, 138.3] 0.77 0.59
25 M 41 8 Temporal Minor 72.4 57.1 [31.4, 112.7] 0.65 0.46
26 F 25 11 Parietal Moderate 92.5 134.7 [10.5, 1074.6] 0.73 0.77
27 F 48 2 Parietal Minor 91.8 401.9 [320.7, 483.1] 0.55 0.68
28 M 28 4 Parietal Minor 65.8 213.4 [58.3, 485.8] 0.73 0.90
29 F 24 6 Focal vertex Moderate 113.0 24.8 [3.5, 95.7] 0.98 0.79
30 M 21 3 Left hemisphere focal Moderate 87.9 98.7 [88.7, 107.7] 0.92 0.62
31 F 45 11 Left insula Minor 88.2 38.3 [9.7, 46.4] 0.39 0.38

Total − − 238 − − 2495.7 97.2 [3.5, 1324.4] 0.75 0.75

M: Male, F: Female, SN: Number of seizures, RD: Recording length, Mean SD: Mean of seizure duration, Range SD: Seizure duration range

3×1. The residual block was designed with a skip connection
combined with two branches, and the down-sampling value
in the max-pooling layer was selected to make the sample
outsize as expected. The output feature size was halved block
by block, from 64 to 8, while the number of filters was
doubled block by block, from 32 to 256. The four residual
blocks were the flatten layer and one fully connected layer
with sigmoid activation and output dimension of 2. Both the

flatten layer and fully connected layer had a 0.5 dropout rate.

During the training, we use batch size as 32 and learning
rate of 5e-4 with the adam optimizer. To avoid the over-fitting
issue, we used the dropout and applied the early-stopping
technique. The early-stopping considers both training loss
and valuation loss, stopping the training when the combined
loss has not decreased for 20 epochs. We implemented our
model in Python 3.6 with the use of Keras 2.0 with a
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Fig. 2: Architecture of the CNN-residual network.

Tensorflow 1.4.0 backend.

C. Performance metrics

To evaluate the performance of the proposed method for
the seizure detection task, we used the metric named the area
under the Receiver Operating Characteristic (ROC) curve.
The ROC curve is the recall plot versus the false-positive rate
(FPR), and the score is calculated based on the size of the
area under the ROC curve (AUC). Definitions of the recall
and the false-positive rate are shown in the below equations.

Recall =
TP

TP+FN
(1)

FPR =
FP

TN+FP
(2)

where TP, TN, FP, and FN represent true positives (correct
seizure detection), true negatives (correct non-seizure detec-
tion), false positives (incorrect seizure detection), and false
negatives (incorrect non-seizure detection), respectively.

IV. RESULTS

This section tests our approach on the Development set
of the TUH dataset and performs a prospective study on
the selected 31 participants from the RPAH dataset. We
investigate the system performance in four scenarios: (1)
the overall AUC score on the Development set of the TUH
dataset, (2) the overall AUC score on the RPAH dataset, (3)
the seizure origin location-based AUC score on the selected
participants from the RPAH dataset. Using ECG is compared
with our previous work of using EEG [10].

The compassion between EEG and ECG performance
can help us better understand the impact of the autonomic
nervous system on individuals with different seizure origins.
As shown in Fig 1, for the test on the Development set of the
TUH dataset, using EEG signals from 19 electrodes achieves
an AUC higher by 0.2 than using the single ECG signal,
whereas, for the prospective test on the 31 RPA selected pa-
tients, the performance is comparable between the two types

of signals. Table II and Fig 4 show the detection result with
patient information on the RPAH dataset. It can be seen that
EEG and ECG perform differently on different patients, and
the average result for EEG and ECG are tied at 0.75. From
Fig 3, it appears that, apart from the outliers, ECG performs
best for participants with parietal focal seizures, whereas
EEG performs the best for participants with frontotemporal
focal seizures. For participants with frontal and parietal focal
seizures, ECG achieves higher performance than EEG; for
frontotemporal, temporal, and unspecific focal seizures, EEG
outperforms ECG. For participants with generalized seizures,
interestingly, ECG outperforms EEG when considering the
outliers.

EEG ECG EEG ECG EEG ECG EEG ECG EEG ECG EEG ECG
G F FT T P FU

0.2

0.4

0.6

0.8

1.0

AU
C

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

Seizure Origin
Fig. 3: G: Generalized, F: Frontal, FT: Frontotemporal, T:

Temporal, P: Parietal, FU: Focal unspecific

Our results illustrate that our proposed model is gener-
alizable across datasets collected in different countries by
different hardware. Using a single ECG electrode, the results
are comparable with 19 EEG electrodes in our prospective
test on the RPAH dataset. The ECG signal achieves higher
performance than EEG for participants with frontal and pari-
etal focal seizures. This result is in agreement with research
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Fig. 4: Seizure detection performance from inference-only studies on a selected 31 participants from the RPAH dataset.

showing that epileptic attacks may influence brain network
inputs to the ANS. The insula is involved in autonomic
functions such as heartbeat [24], [25]. The parietal and
frontal lobes are very connected to the insula [26]. This may
be the reason for achieving superior performance in detecting
parietal and frontal seizures using the addition of ECG,
though further work is needed. However, our results from
the standalone ECG seizure detection suggest that for adult
patients with frontal focal seizures, ECG provides additional
information for seizure detection. Therefore the use of ECG-
based detection in addition to EEG-based detection may
produce a superior solution to seizure detection based on
EEG alone.

V. CONCLUSION

Using EEG for seizure detection has been studied and
improved over the last four decades. However, limited re-
search has been done with ECG signals, as the performance
is not on par with EEG-based approaches. Our proposed
model suggests that for prospective study ECG can achieve
a comparable result with EEG, and even higher on the
frontal and parietal focal seizures (adult patients), with an
improvement of 0.21 and 0.11 AUC scores, respectively. This
is the first study using deep learning to demonstrate a com-
parable performance between two separate and generalized
inference-only EEG and ECG tests.
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