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Abstract— Electroencephalogram (EEG)-based brain-
computer interface (BCI) systems tend to suffer from
performance degradation due to the presence of noise and
artifacts in EEG data. This study is aimed at systematically
investigating the robustness of state-of-the-art machine learning
and deep learning based EEG-BCI models for motor imagery
classification against simulated channel-specific noise in EEG
data, at various low values of signal-to-noise ratio (SNR). Our
results illustrate higher robustness of deep learning based
MI classification models compared to the traditional machine
learning based model, while identifying a set of channels
with large sensitivity to simulated channel-specific noise. The
EEGNet is relatively more robust towards channel-specific
noise than Shallow ConvNet and FBCSP. We propose a
preliminary solution, based on activation function, to improve
the robustness of the deep learning models. By using saturating
nonlinearities, the percentage drop in classification accuracy
for SNR of -18 dB had reduced from 10.99% to 6.53%
for EEGNet and 14.05% to 3.57% for Shallow ConvNet.
Through this study, we emphasize the need for a more precise
solution for enhancing the robustness, and thereby usability of
EEG-BCI systems.

I. INTRODUCTION

Brain-computer interface (BCI) is a special communica-
tion protocol being used in a variety of application domains
ranging from entertainment [1] to health [2]. A typical BCI
procedure involves collection of brain data, which is used
to decode user’s intent and then translate it to an action
command to be executed by the connected external device
[3]. There are various methods of collecting data from the
brain, out of which non-invasive EEG is predominantly used
due to its high temporal resolution, ease of use and cost-
effectiveness. Nevertheless, EEG data is high-dimensional,
nonstationary and is highly susceptible to artifacts and noise.
In addition, hardware related issues such as channel dis-
connections and displacements can introduce external noise
factors in the signal, leading to poor performance of EEG-
BCI systems. Channel disconnections, in particular, are quite
common yet hard to detect during the experimental study [4].
The resulting noise in the signal is, therefore, identified only
after the data has been collected. As re-recording EEG is
not always viable, it is essential for EEG-BCI classification
systems to remain extremely robust to unexpected data
perturbations that may occur during data collection. Amongst
the different EEG-based BCI paradigms, motor imagery (MI)
[5] is the most widely researched, due to its connection
with important clinical applications used for communication
[6] and rehabilitation purposes [7]. EEG-BCI classification
methods for MI have predominantly been using machine
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learning based algorithms, such as the common spatial
patterns (CSP) [8] and the filter-bank CSP (FBCSP) [9]. Due
to the recent progress of deep learning [10], several neural
network based EEG-BCI classification models have been
introduced and are reported to be performing better than the
machine learning counterparts [11]. In particular, the Deep
ConvNet & Shallow ConvNet [12], and the EEGNet [13] are
considered as the benchmark networks for MI classification.
Nevertheless, the sensitivity of deep learning models to data
perturbations is a well-known and widely researched issue in
computer vision [14]. As our dependency on deep learning
methods for building EEG-based BCIs increase, the need
of the hour is to ensure robustness in these methods for
demonstration of stable classification performance even in
the presence of unwanted noise in EEG data.

A. Related Work

Few recent studies have discussed the robustness of ma-
chine learning and deep learning based EEG-BCI models
to perturbations in data. In [15], Zhang et al. investigated
the robustness of EEG-BCI models developed using convo-
lutional neural networks (CNN), such as EEGNet [13], Deep
ConvNet and Shallow ConvNet [12], to adversarial attacks.
The idea exposed the susceptibility of CNN models to hard-
to-detect adversarial noise, and their results illustrated that
even small amounts of noise in data can be detrimental
to the classification performance of these models. In [16],
Nakagome et al. performed a comparative analysis of eight
different machine learning and neural network based algo-
rithms under different conditions of data pre-processing such
as downsampling, tap size, and usage of various frequency
bands. In addition, they also conducted a channel perturba-
tion analysis wherein they randomly perturbed the channel
data one-by-one, and used the performance drop to identify
the channel importance and model robustness. These studies
provide evidence on the vulnerability of machine learning
and deep learning based EEG-BCI classification methods
to noisy data. They also highlight the need for a more
systematic investigation of network sensitivity to channel-
specific noise in EEG, which is the purpose of our study.
Such an investigation will pave the way for finding solutions
to improve the robustness of EEG-BCIs so as to enhance
their usability in real-world applications.

B. Problem Statement

The objective of this study is to examine the response of
EEG-BCI models to channel-specific noise, thereby, evaluate
the relation between the performance of these models and
negative signal-to-noise ratio (SNR) of noise. To accomplish
this, we introduce three scenarios of channel disconnection:
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Fig. 1: Initial and concluding trials of a a) good channel b)
disconnected channel and c) noisy channel from real EEG
data.

1) there is no signal flow to the electrode, 2) the electrode
is detecting background noise rather than EEG, 3) the SNR
of background noise deteriorates gradually. To demonstrate
these scenarios with examples, we selected some channels
from a real EEG dataset, whose data illustrate either a sudden
loss of signal or noise with increasing variance over time.
The data was bandpass filtered in the frequency range of 4-
40 Hz and the channel-wise percentage change in variance
across trials was estimated. The channel whose change in
variance over time was within ±50% was chosen to represent
the good channel. The channel exhibiting a sudden loss of
signal in the final trials was chosen to be the disconnected
channel. The noisy channel is the one showing an increasing
trend in variance over time. Fig. 1 contains the plots of
sample initial and concluding trials of the good channel, the
disconnected channel, and the noisy channel from the EEG
data.

Motivated by the observations of our analysis and to
further explore how the aforementioned real scenarios impact
the performance of the MI classification models, we design
experiments in which each channel in the EEG data is re-
placed by a constant 0V signal, a Gaussian noise signal with
SNR of 0 dB, and Gaussian noise signal with SNR further
reduced to -6 dB, -12 dB, -16 dB, and -18 dB, to represent
each of the three scenarios of channel disconnection, and the
models are evaluated using the simulated noisy data. This
experimental setup of replacing channel-wise EEG data with
noise is unique in comparison with the studies cited in the
related work section, which have performed analysis using
additive noises or random perturbations in EEG data.

As an outcome of this robustness analysis, we quantify the
accuracy deviation of the models for each scenario of channel
disconnection and also highlight the channel-wise impact
on performance. Using the analysis results, we propose a
preliminary solution to improve the robustness of the deep
learning models and evaluate the proposed approach. We

conclude our analysis by indicating the need to explore
further on the varied robustness behavior of the different
models and to bring forth a more precise solution to boost
their robustness. We believe that this is the first study to
perform a methodical channel-wise robustness analysis of
EEG-BCI systems.

II. EXPERIMENTAL SETUP

To investigate and evaluate the robustness performance
of the EEG-based BCI models, we conducted a simulated
experimental study by exposing three different EEG-BCI
models that operate using the MI paradigm, to artificially
introduced channel-specific noise. The following subsections
describe in detail about the composition of our experiment
and our inquiry into the results obtained thereby.

A. Classification of MI-EEG

For the robustness analysis, we focus mainly on subject-
specific models, as they are simpler than the subject-
independent models in terms of not considering the EEG
variabilities between individuals. We have evaluated the
robustness performance of FBCSP [9], which is the machine-
learning based benchmark algorithm for MI classification,
along with other latest deep learning models such as Shallow
ConvNet [12] and EEGNet [13]. Out of the two mod-
els, Deep ConvNet and Shallow ConvNet introduced by
Schirrmeister et al. [12], we chose to work with Shallow
ConvNet for our analysis as it is a simpler model with fewer
parameters.

B. Data

We performed the analysis using two-class (left and right
hand) MI data from the Korea University EEG dataset [17]
that contains MI-EEG data collected from 54 healthy people.
For every subject, data was obtained from two sessions col-
lected using 62-channel EEG at 1000 Hz sampling frequency.
The data consists of 200 MI trials from each session, of
which 100 trials belong to each class. We used 0-4 s post-cue
data from 20 channels in the motor region (FC-5/3/1/2/4/6,
C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6) and down-sampled it
by four for the analysis.

C. Experiment using Simulated Channel-Specific Noise

1) Model Training: We first trained all the models -
FBCSP, EEGNet and Shallow ConvNet, using hold-out anal-
ysis. The hold-out analysis was performed using session 1
of the dataset for training and session 2 for testing. The
trained subject-specific model parameters were saved for the
robustness analysis to be performed later.

2) Noise Generation: To perform a simulated experiment
that will mimic a practical channel disconnection scenario,
we perturbed the EEG data, channel by channel, by using
two types of noise. As discussed in the introduction section,
a channel disconnection can affect the data in two ways. It
can either obstruct the flow of signal, in which case the EEG
data has zero amplitude or can cause background noise. For
no signal condition, we simply replaced the channel data
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with zeros (zero channel) and to mimic background noise
we substituted the channel data with a Gaussian noise distri-
bution (Gaussian channel) generated using subject-specific
mean and standard deviation obtained from EEG data. It
is to be noted that the simulated noise used in this study
does not resemble the noise found in real EEG signals.
Nevertheless, the simulated Gaussian noise, generated using
the characteristics of real EEG, is used for contaminating
channel-wise EEG data for the purpose of analysis.

Algorithm 1: Channel-Wise Robustness Analysis
Input: EEG data and pre-trained subject-specific

model parameters
Output: Avg. subject-specific accuracy of the model

for zero channel and Gaussian channel
1 foreach subject s do
2 load data xs ∈ RN×C×T∗

;
3 load model ms;
4 acczc = [];
5 accgc = [];
6 foreach channel c ∈ C do
7 x′s = xs;
8 x′s(c) = 0;
9 acczc

+← ms(x
′
s);

10 generate 100 samples of X ∼ N (µ, σ),
11 where µ = mean(xs), σ = std(xs);
12 accgc_100 = [];
13 foreach sample Xn ∈ X do
14 x′′s = xs;
15 x′′s (c) = Xn;
16 accgc_100

+← ms(x
′′
s );

17 end
18 accgc

+← mean(accgc_100);
19 end
20 acczero_channel

+← mean(acczc);
21 accgaussian_channel

+← mean(accgc);
22 end
23 Avg. subject-specific classification accuracy for,
24 1) Zero channel = mean(acczero_channel)
25 2) Gaussian channel = mean(accgaussian_channel)

*N = No. of trials, C = No. of channels, T = No. of time samples

3) Model Evaluation with Noisy Data: For every model,
we performed a subject-specific analysis by simulating
channel-specific noise and then evaluating the model per-
formance on the resulting noisy data. The proposed experi-
mental procedure is summarized in Algorithm 1.

D. Further Analysis

1) Channel-Wise Sensitivity: In order to identify the most
sensitive channels for all models, we evaluated the signifi-
cance of accuracy deviation per channel for all subjects and
for all models, using the permutation test. The permutation
test was performed for each subject using the set of ac-
curacies obtained by applying 100 different Gaussian noise
samples per channel.

2) Evaluation with Decreasing SNR in the Gaussian
Channel: As the SNR of background noise may gradually
worsen over time as indicated in Fig. 1, we further repeated
the experiment by decreasing the SNR of the generated
Gaussian noise to -6 dB, -12 dB, -16 dB, and -18 dB. As
mentioned earlier, the baseline Gaussian noise is generated
using subject specific mean and standard deviation derived
from the original signal. The SNR with reference to the
baseline noise is -6 dB when the amplitude of noise is
increased by a factor of 2. Similarly, the SNR is -12 dB,
-16 dB, and -18 dB, when the noise amplitude is increased
by factors of 4, 6, and 8, respectively. The model accuracies
obtained for each value of SNR and for every channel were
recorded for further analysis.

3) Changing the Activation Function to Improve Robust-
ness: The ensuing challenge is to robustify the MI clas-
sification models such that they are better able to tolerate
noisy signal with negative SNR. A core component of a
deep learning model is its activation function, which decides
the activation of neurons and controls the stability of the
network. The EEGNet uses the Exponential Linear Unit
(ELU) activation function [18], and the Shallow ConvNet
uses two nonlinearities in the architecture, a squaring non-
linearity followed by a logarithmic nonlinearity that together
mimic the log-variance computation.
The ELU activation, which is similar to the Rectified Linear
Unit (RELU) activation [19] except for a more gradual satu-
ration on the negative part, has achieved good results in deep
learning architectures pertaining to computer vision [18]. In
spite of its success, ELU and the family of related activation
functions, such as RELU and Leaky RELU [20], follow a
linear function on the positive part. Given this characteristic,
these functions can produce large, unstable activations when
exposed to high amplitude EEG data. Similarly, the squaring
nonlinearity used by the Shallow ConvNet model can also
lead to large activations as it doubles the input values.
Hence, we propose to replace the activation functions used
by the EEGNet and Shallow ConvNet models with a function
that has larger stability to high amplitude input while main-
taining the baseline. The Sigmoid [21] and the Tanh [22]
are saturating activation functions that may help to maintain
the stability of the network when exposed to high amplitude
EEG data. To verify the effectiveness of using saturating
nonlinearities as a solution to the robustness issue, we
repeated the analysis of the two deep learning networks after
replacing their existing activation functions with Sigmoid and
Tanh activation functions.

III. RESULTS

The robustness analysis results of FBCSP, EEGNet, and
Shallow ConvNet models indicate an overall performance
drop with channel-wise absence of signal (zero channel) and
presence of Gaussian noise (Gaussian channel). In addition,
the performance continues to degrade as the SNR of the
Gaussian channel is reduced, thereby illustrating the effect
of decreasing SNR on accuracy. Statistical analysis of the
obtained results points out the most sensitive channels for
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every model. Usage of saturating activation functions seems
to boost the robustness of the deep learning models consid-
erably, yet it does not completely eradicate their sensitivity
to noise. The following sections describe in detail about our
analysis results.

A. Baseline Results vs Analysis Results with Simulated
Channel-Specific Noise

The baseline accuracy of all models obtained from hold-
out analysis is presented in column 2 of Table I. The baseline
accuracy is 61.20% for FBCSP, 63.54% for EEGNet, and
60.44% for Shallow ConvNet.

From columns 3 and 4 of Table I, we can observe the per-
formance drop in all models with channel-specific no signal
(zero channel) as well as Gaussian noise (Gaussian channel).
EEGNet is the most robust to channel-specific noise amongst
the three models considered. EEGNet shows a 2.52% relative
drop (63.54% vs 61.94%) in accuracy with zero channel
and 2.79% relative drop in accuracy (63.54% vs 61.77%)
with Gaussian channel, both of which are not significant.
The performance drop of EEGNet with Gaussian channel
is the lowest of all models considered. While EEGNet is
the most robust model in the presence of Gaussian noise,
Shallow ConvNet is the most robust to the absence of signal,
for which the model shows a performance drop of 1.47%
(60.44% vs 59.55%) which is the lowest amongst all models
and is not significant. Shallow ConvNet also suffers an
accuracy drop of 4.22% (60.44% vs 57.89%) with Gaussian
channel, which is not significant as well. The accuracy of
FBCSP declines by 5.54% (61.20% vs 57.81%) which is
not significant and 8.37% (61.20% vs 56.08%, p < 0.05)
which is significant, with zero channel and Gaussian channel,
respectively. The results of analysis with Gaussian channel
illustrate that the deep learning models EEGNet and Shallow
ConvNet are relatively more robust to noise than FBCSP. Fig.
2 compares the subject-specific classification performance of
the different models under simulated channel-specific noise.

B. Analysis Results with Decreasing SNR in the Gaussian
Channel

From columns 5-8 of Table I, we see the overall trend of
decreasing performance with decreasing SNR of Gaussian
channel for all models. EEGNet, which is the most robust
model to channel-specific noise, also seems to be relatively
robust to the worsening SNR of the incoming noisy signal.
The initial accuracy drop of EEGNet with Gaussian channel
(2.79%) increases up to 10.99% as the SNR reduces to -18
dB. FBCSP and Shallow ConvNet models begin with 8.37%
and 4.22% drops in performance in the presence of Gaussian
channel, respectively, reaching up to 17.53% and 14.05%
drops, respectively, as the SNR drops to -18 dB. Results of
all models obtained with SNR of -12 dB, -16 dB, and -18
dB, are significantly different from their respective baseline
accuracies (p < 0.05). Specifically, all models show the most
significant performance deviation when the SNR is -18 dB
(p < 0.001).

Fig. 3 illustrates the model-specific performance deviation
with decreasing SNR of simulated noise. We have sorted the
three plots based on the subject-specific baseline accuracies
of the respective model, for better clarity. We observe an
overall trend of declining performance with decreasing SNR
in the Gaussian channel, where the performance is pushed
down to chance-level. This is especially visible for FBCSP.
EEGNet is clearly the most robust to negative SNR, and the
model’s overall deviation in performance for all subjects is
not as large as that seen for the other two models. Shallow
ConvNet is the next most robust model to negative SNR,
illustrating stable performance for some of the subjects,
including those with higher baseline accuracy. Nevertheless,
the baseline accuracy of Shallow ConvNet for several sub-
jects is close to chance-level to begin with, hence making
it difficult to assess the robustness of the model for these
subjects.

C. Channel-Wise Sensitivity of the Models

As all twenty channels considered for this study be-
long to the motor region, which is highly relevant for MI
classification, the subject-specific performance deviation is
significant for most of the channels to start with and for all
channels when the SNR is reduced to -18 dB. Hence, we
considered Gaussian noise with SNR of 0 dB to identify the
channels that are most sensitive to noise across subjects. For
each model, those channels with significant (p < 0.0001)
deviations, as indicated by the permutation test described
in section II. D 1, were identified for every subject. The
number of subjects for whom each of these channels caused
significant deviation in the presence of noise was then
calculated.

FBCSP is most sensitive to noise in C6, CPz, CP1 and
CP6, showing significant performance deviation in these
channels for more than 45 out of 54 subjects. EEGNet shows
significant performance deviation with noise in C6, CP1,
CP3, FC2, and FC3 for more than 45 subjects. Shallow
ConvNet shows high sensitivity to all channels for more
than 43 out of 54 subjects. In particular, Shallow ConvNet
illustrates significant performance deviation with noise in
channels FC3 and FC5 for more than 50 out of 54 subjects.
Channels C6, CP1 and FC3 appear in the list of most
sensitive channels for two out of the three models considered.

D. Impact of Activation Function

The EEGNet model using Sigmoid activation function
produced a slightly lower baseline accuracy (62.35%, p >
0.05) compared to the original model (63.54%), nevertheless,
demonstrated improved robustness to channel-specific noise.
The performance drop of the EEGNet model with Sigmoid
activation function for SNR of -18 dB is 6.53% (p > 0.05) as
against the 10.99% drop of the original model with the ELU
activation function. The results obtained for EEGNet using
the Sigmoid activation function are not significantly different
from those obtained using the original EEGNet model, as
presented in Table I. The baseline performance of Shallow
ConvNet with Sigmoid activation function is 58.27% (p >
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TABLE I
AVERAGE SUBJECT-SPECIFIC CLASSIFICATION ACCURACY WITH CHANNEL-SPECIFIC NOISE

Gaussian ChannelModel Baselineorig Zero Channel 0 dB -6 dB -12 dB -16 dB -18 dB

FBCSP [9] 61.20±15.14 57.81±12.11 56.08±10.41* 54.17±7.83* 51.86±4.27** 50.85±2.56** 50.47±1.62**

EEGNet [13] 63.54±11.53 61.94±10.30 61.77±10.25 61.18±9.66 59.43±8.26* 57.80±7.34* 56.56±6.67**

Shallow ConvNet [12] 60.44±14.97 59.55±13.43 57.89±11.42 55.94±9.14 53.82±6.83* 52.62±5.56** 51.95±4.57**

The *, and ** represent that the accuracy is significantly different from the baseline accuracy, with *: p < 0.05 and, **:p < 0.001.

TABLE II
ROBUSTNESS OF DEEP LEARNING MODELS USING SIGMOID AND TANH ACTIVATION FUNCTIONS

Gaussian ChannelActivation Function Model Baselineorig Baselinemod Zero Channel 0 dB -6 dB -12 dB -16 dB -18 dB
EEGNet [13] 63.54±11.53 62.35±11.34 60.91±10 60.90±10.00 60.72±9.81 59.95±9.16 59.04±8.57 58.28±8.06Sigmoid

Shallow ConvNet [12] 60.44±14.97 58.27±8.69 57.68±7.99 57.72±8.14 57.70±7.94 57.39±7.24* 56.79±6.54** 56.19±5.84**

EEGNet [13] 63.54±11.53 62.90±10.73 61.69±9.74 61.61±9.71 61.32±9.57 60.51±9.06 59.55±8.55 58.69±8.12Tanh
Shallow ConvNet [12] 60.44±14.97 58.56±9.32 58.04±8.50 58.13±8.55 58.13±8.48 57.72±8.00* 57.09±7.35** 56.42±6.73**

The *, and ** represent that the accuracy is significantly different from the accuracy obtained using the original model for the respective noise condition
(in Table I), with *: p < 0.05 and, **:p < 0.001. Baselineorig contains the baseline accuracies obtained using the original models. Baselinemod contains the
baseline accuracies obtained using the models with replaced activation functions.

Fig. 2: Subject-specific baseline, zero channel (ZC) and Gaussian channel (GC) accuracies across models. Each box represents
the first and the third quartile, and the horizontal line in the middle denotes the median accuracy. The SNR (in dB) of the
Gaussian channels are indicated in the respective labels.

0.05) compared to 60.44% achieved by the original model.
This deterioration in performance, which is not significant,
can be attributed to the removal of the squaring and logarith-
mic nonlinearities, which was a fundamental characteristic
of the model architecture that computes the log-variance of
the input EEG. The accuracy of Shallow ConvNet with the
Sigmoid activation function dropped by 3.57% (p < 0.001)
when the SNR is -18 dB, thus showing an improvement in
robustness compared to the original model for which the
performance had dropped by 14.05% for the same value of
SNR in the Gaussian channel. The accuracy drop in the
absence of signal is 2.31% (p > 0.05) for EEGNet, and
1.01% (p > 0.05) for Shallow ConvNet, which is lower than
their respective drops in accuracy using the original model.
The results obtained for Shallow ConvNet using the Sigmoid
activation function for SNR values of -12 dB, -16 dB, and
-18 dB, are significantly different from the results obtained
using the original Shallow ConvNet model (Table I).
The Tanh nonlinearity is usually preferred over Sigmoid

nonlinearity due to its zero-centeredness and has been known
to improve the training performance of deep learning models
[23]. The robustness of EEGNet and Shallow ConvNet mod-

els to channel-specific noise had improved by the application
of Tanh activation function, while showing a slight increase
in the baseline accuracy when compared to the baseline
accuracy obtained using the Sigmoid activation function. The
baseline accuracies of EEGNet and Shallow ConvNet mod-
els with Tanh activation function are 62.90% and 58.56%,
respectively, which are not significantly different (p > 0.05)
from their original baseline accuracies. The performance of
these models declined by 1.92% (p > 0.05) and 0.89% (p >
0.05), respectively, for zero channel, and 6.69% (p > 0.05)
and 3.65% (p < 0.001), respectively, for Gaussian channel
with SNR of -18 dB. The robustness analysis results obtained
using Tanh function are not significantly different from the
respective baseline results in Table I, except those observed
for Shallow ConvNet for SNR values of -12 dB (p < 0.05),
-16 dB (p < 0.05), and -18 dB (p < 0.001). The complete
set of results with Sigmoid and Tanh activation functions are
presented in Table II and the performance comparison of the
two models is illustrated using box plots in Fig. 4.
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Fig. 3: Performance deviation with decreasing values of SNR
in the Gaussian channel of a) FBCSP b) EEGNet, and c)
Shallow ConvNet

IV. DISCUSSION

In this study, we evaluated the robustness of machine
learning and deep learning based MI classification models
under scenarios of channel disconnection such as absence
of signal and presence of background noise. We further
examined the performance deviation of these models by
decreasing the SNR of simulated noise. By performing a
statistical analysis of the results, we identified the most
sensitive channels across subjects for each model. To the
best of our knowledge, this is the first study that system-
atically investigates the channel-wise robustness of state-of-
the-art EEG-based BCI systems. In addition to evaluating the
robustness, we have also suggested a preliminary solution
to enhance the robustness of the deep learning models by
using appropriate activation functions. Nevertheless, a more
optimal solution is necessary to stabilize the performance of
these models when subjected to noisy data.

From the analysis results presented in Table I, Fig. 2 and
Fig. 3, it is evident that all models considered in this study
show poor response to zero channel and Gaussian channel
conditions. In addition, the performance of these models con-
tinue to deteriorate, moving towards chance-level accuracy,
when the SNR of Gaussian channel is further reduced. Our
results indicate that EEGNet is the most robust to channel-
specific noise. The performance drop of EEGNet is 10.99%,
Shallow ConvNet is 14.05% and FBCSP is 17.53%, for
an SNR of -18 dB. This study is a step forward towards
understanding the robustness of deep learning based EEG-
BCI models to noisy signal with negative SNR occurring due
to unexpected experimental conditions.

Using the results of the robustness analysis, we identified
the most sensitive channels for each model, by calculating
the number of subjects showing significant accuracy devia-
tion with Gaussian channel. Although different models are
sensitive to noise in different sets of channels, we identified
certain channels, such as C6, CP1 and FC3, that appeared to
be the most sensitive for more than one model.

By replacing the activation functions used by the two
deep learning models, EEGNet and Shallow ConvNet, we
were able to boost their robustness such that their respective
accuracy drops for SNR of -18 dB had reduced. Nevertheless,
the impact of decreasing SNR on these models is still visible.
This study indicates that the inherent network properties,
including the choice of activation functions, can affect the
robustness of deep learning based MI classification models.
The analysis results using the original models (Table I) and
the experiment with the two activation functions (Table II)
have together led us to believe that there is a certain trade-off
between robustness performance and training performance
while designing the model architecture. While ELU acti-
vation function helps EEGNet model to achieve the best
baseline performance, it produces large unstable activations
when the model is exposed to noise, thus impacting its ro-
bustness. Similarly, the combination of squaring and logarith-
mic nonlinearities for log-variance computation improves the
baseline performance of Shallow ConvNet, however, hurts
the robustness of the model to channel-specific noise. On
the other hand, saturating nonlinearities such as Sigmoid and
Tanh, enhance the robustness of these models towards noise
at the cost of deterioration in their training performance.

In spite of providing us with some important insights, this
study is not complete in itself. We have considered negative
SNR values, where the noise completely takes over the
signal, to test the robustness of the BCI models, however, we
have not performed an evaluation of the models by gradually
varying the signal-to-noise ratio of the input EEG data, which
may help us understand the behavior of these models in the
presence of small amounts of noise in the signal. Similarly,
unlike the examples of disconnected channels shown in Fig.
1 where the disconnection happens after a certain number
of trials, we have simulated the channel disconnection right
from the first trial and hence the entire channel data is
affected in our experiments. Simulating noise in a certain
portion of channel data will be part of our future analysis.

V. CONCLUSION

In summary, the main goal of our experimental study
was to evaluate the robustness of state-of-the-art EEG-BCI
models towards noise in channel data that can commonly
occur during data collection due to unexpected experimental
conditions such as channel disconnections. In particular, we
focused on observing the response of the models to absence
of signal and presence of background noise. In addition, we
also examined the relation between the model performance
and SNR of noise by subjecting these models to noise with
decreasing values of SNR. Our results indicate the sensitivity
of these models to channel-specific noise, more so towards
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Fig. 4: Subject-specific baseline, zero channel (ZC) and Gaussian channel (GC) accuracies for EEGNet and Shallow ConvNet
models using a) Sigmoid and b) Tanh activation functions. Each box represents the first and the third quartile, and the
horizontal line in the middle denotes the median accuracy.

noisy signal with negative SNR. We have suggested a simple
preliminary solution based on activation functions to improve
the robustness of the models. Nevertheless, a more rigorous
approach to address the robustness issue in deep learning
based EEG-BCI models is essential. We believe that our
study would evoke attention towards BCI robustness and
create an awareness amongst BCI researchers of the different
aspects of robustness that the BCI systems are required to
satisfy in order to be fully functional in a real-world setting.
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