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Abstract—Brain machine interface (BMI) can translate 

neural activity into digital commands to control prostheses. The 

decoder in BMI models the mechanism relating to neural activity 

and intents in brain. In our brain, single neuronal tuning 

property and neural connectivity contribute to encoding the 

intents together. These properties may change, a phenomenon 

which is named neural adaptation during using BMIs. Neural 

adaptation requires the decoder to consider the two factors at 

the same time and has the potential to follow their changes. 

However, in the previous work, the class of neural network and 

clustering decoder can consider the neural connectivity 

regardless of the single neuronal tuning property. On the other 

hand, point process methods can model the single neuronal 

tuning property but fail to address the neural connectivity. In 

this paper, we propose a new point process decoder with the 

information of neural connectivity named NCPP. We derive the 

neural connectivity component from the point process method 

by Bayes’ rule and use a clustering decoder to represent the 

neural connectivity. This method can consider the neural 

connectivity and the single neuronal tuning property at the same 

time. We validate the method on simulation data where the point 

process method cannot achieve a good decoding performance 

and compare it with sequential Monte Carlo point process 

method (SMCPP). The results show our method outperforms the 

pure point process method which indicates our method can 

model the neural connectivity and single neuronal tuning 

property at the same time. 

 

Clinical Relevance— This paper proposes a decoder that can 

model the neural connectivity and the single neuronal tuning 

property at the same time, which is potential to explain the 

neural adaptation computationally 

I. INTRODUCTION 

Brain-machine interface (BMI) can help disabled patients 
restore their motor functions by controlling prostheses directly 
from brain [1]. The decoder in BMI system plays an important 
role which translates neural activity into movement intents. 
Apart from the translation of neural activity, the decoder 
mathematically models the mechanism of brain and help us 
understand how neurons contribute to generate movements. 
When patients use BMIs, the neural activity responding to the 
same movement may change adaptively [2, 3]. This 
phenomenon named neural adaptation mainly including the 
changes of single neuronal tuning property (such as preferred 
direction and modulation depth) and neural connectivity. If the 
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decoder is fixed, we cannot keep a stable decoding 
performance and model the brain correctly. Therefore, to 
model the brain precisely, the decoder is required to have the 
ability to adaptively change considering both the changes.  

In the previous work, many decoding algorithms were 
designed and implemented in BMI system, and some of them 
have the potential to follow a part of neural adaptation. The 
class of neural network and clustering methods provide the 
tool to explore neural connectivity, which decode movements 
from the neural population patterns [4, 5]. The neural 
population patterns connect the behaviors of the neurons as an 
ensemble. The methods consider the difference of neural 
activity patterns in the observation space and project the 
patterns into the movement space. By updating the parameters 
of neural network or cluster distribution, the changes of neural 
connectivity can be followed. However, these methods ignore 
the single neuronal tuning property because the features of 
neural activity are delivered in the scale of neural population. 

On the other hand, point process decoders can help us to 
model single neuronal behavior [6-8]. The point process 
observation can extract the information of single neuronal 
tuning property from discrete spike timing. A tuning function 
for each neuron is built after parameterizing the tuning 
property. The tuning function indicates how a neuron encodes 
the movement independently. The single neuronal tuning 
function participate into the decoding as the observation 
function of state-observation model. By updating the 
parameters in tuning function, the neural adaptation of single 
neuronal behavior can be addressed. However, point process 
methods do not consider the neural connectivity because they 
assume the neurons independently encode the movement.  

The above two classes of decoders only consider one 
perspective of neural adaptation. But we cannot guarantee 
what neural adaption happens when subjects use BMIs. If we 
can consider both perspectives of neural adaptation, the 
decoding performance may be improved, and the model can 
be closer to the real brain mechanism. 

In this paper, we propose a neural-connectivity point 
process decoder (NCPP) to consider both the neural 
connectivity and single neuronal tuning property at the same 
time which could model the brain more precisely. The 
proposed decoder introduces a clustering decoder which 
represents the neural connectivity into the sequential Monte 
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Carlo point process decoder (SMCPP). A set of movement 
particles is generated and propagated in the proposed method 
to reconstruct the probability density for each time index. 
Compared to the SMCPP where the associated weight of each 
particle is only determined by the single neuronal tuning 
property, the associated weights in NCPP are also proportional 
to the probability of the movement decoded by the clustering 
decoder. Therefore, the posterior density of movement at each 
time index is modulated by the neural connectivity and single 
neuronal tuning property at the same time. We validate the 
method on simulation data of a rat two-lever discrimination 
task and the results shows that the proposed method can 
improve the decoding performance by introducing accurate 
neural connectivity information into the point process method. 
The rest of this paper is organized as followed. Section II 
introduce the deduction and details of the algorithm. The 
simulation data and the results are shown in Section III 
followed by the discussion in Section IV. 

II. METHODOLOGY 

A. Sequential Monte Carlo Point Process Decoder 

Given a discrete observation time sequence {𝑡𝑘}𝑘=0
𝐾  with a 

constant time interval Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 , 𝑁𝑘  is defined as the 
total number of neuronal spikes up to 𝑡𝑘 , and Δ𝑁𝑘 = 𝑁𝑘 −
𝑁𝑘−1  represents the number of spikes within the interval 
(𝑡𝑘−1, 𝑡𝑘] . The observation can be modeled as an 
inhomogeneous Poisson process with its conditional intensity 
function 𝜆𝑘(𝑥𝑘 , 𝜃𝑘, 𝐻𝑘−1) which is defined as 

𝜆𝑘(𝑥𝑘 , 𝜃𝑘 , 𝐻𝑘−1) = lim
Δ𝑡→0

Pr⁡(Δ𝑁𝑘=1|𝑥𝑘,𝜃𝑘,𝐻𝑘−1)

Δ𝑡
, (1) 

where 𝑥𝑘 is the movement, 𝜃𝑘 is the tuning parameter at time 
𝑡𝑘, and 𝐻𝑘 = [𝑥1:𝑘 , 𝑁1:𝑘] is the history of all the movements 
and observations up to time 𝑡𝑘 . The conditional intensity 
function is assumed to be a nonlinear observation model 
represented by 

𝜆𝑘(𝑥𝑘 , 𝜃𝑘) = 𝑓(𝑥𝑘 , 𝜃𝑘), (2) 

The nonlinear function 𝑓(⋅) is assumed to be known and 
the parameter 𝜃𝑘 is considered fixed in this model. At the time 
𝑡𝑘, the posterior density of the movement 𝑥𝑘 conditioned on 
the observation Δ𝑁𝑘 and the history 𝐻𝑘−1 can be represented 
by Bayes’ rule as 

𝑝(𝑥𝑘|Δ𝑁𝑘 , 𝐻𝑘−1) =
𝑝(Δ𝑁𝑘|𝑥𝑘 , 𝐻𝑘−1)𝑝(𝑥𝑘|𝐻𝑘−1)

𝑝(Δ𝑁𝑘|𝐻𝑘−1)
, (3) 

where 𝑝(Δ𝑁𝑘|𝑥𝑘 , 𝐻𝑘−1) is the likelihood of observed spikes 
within the interval (𝑡𝑘−1, 𝑡𝑘]. Due to the assumptions of the 
conditional intensity function, the likelihood can be simplified 
as 𝑝(Δ𝑁𝑘|𝑥𝑘), which is defined as 

𝑝(Δ𝑁𝑘|𝑥𝑘) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛⁡(𝜆𝑘 , Δ𝑁𝑘) =
𝜆𝑘
ΔNk

Δ𝑁𝑘!
exp(𝜆𝑘). (4) 

The prior density of the movement 𝑝(𝑥𝑘|𝐻𝑘−1) is given by the 
Chapman-Kolmogorov equation 

𝑝(𝑥𝑘|𝐻𝑘−1) = 

∫ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝐻𝑘−1)𝑝(𝑥𝑘−1|Δ𝑁𝑘−1, 𝐻𝑘−2), 
(5) 

where the movement 𝑥𝑘 evolves based on the linear function 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑟𝑘 . (6) 

𝐹 is the state transition matrix which is trained by the least 
squares method. 𝑟𝑘  is a zero-mean Gaussian noise with 
covariance 𝑅 which is estimated by the residue of the linear 
approximation. 

In order to construct the non-Gaussian density of the 

movement, a set of particles {𝑥𝑘
𝑖 }
𝑖=1

𝑁𝑠
⁡is resampled from the 

prior density 𝑝(𝑥𝑘|𝐻𝑘−1)to reconstruct the posterior density 

with their associated weights {𝑤𝑘
𝑖 }
𝑖=1

𝑁𝑠
, where 𝑁𝑠 is the number 

of particles and 𝑖 is the index of particle. The associated weight 
is proportional to the likelihood of the observed spikes. And 
due to the assumption of neural independence, the weight of 
each particle can be expressed as the product of each neuronal 
likelihood: 

𝑤𝑘
𝑖 ∝ 𝑝(Δ𝑁𝑘|𝑥𝑘

𝑖 ) = Π𝑗=1
𝐽 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑘

𝑗
), (7) 

where 𝐽 is the number of neurons and 𝑗 is the neuron index. 
The posterior density can be formed in the Parzen window 
estimation [9] as 

𝑝(𝑥𝑘|Δ𝑁𝑘 , 𝐻𝑘−1) =
1

𝑁𝑠
Σ𝑖=1
𝑁𝑠 𝑤𝑘

𝑖𝜅(𝑥𝑘 − 𝑥𝑘
𝑖 ), (8) 

where 𝜅(⋅) is a Gaussian kernel and its size is determined by 
the Silverman’s rule [9]. The expectation of the movement on 
the posterior density 𝐸[𝑥𝑘|𝑝(𝑥𝑘|Δ𝑁𝑘 , 𝐻𝑘−1)] is output as the 
estimation of movement. 

B. Deriving Neural Connectivity from the Point Process 

Decoder 

In order to derive the neural connectivity part from the 
point process, we introduce the firing probability 𝜆𝑘  as an 
intermediate variable into the likelihood of observation 
𝑝(Δ𝑁𝑘|𝑥𝑘) in Eq. 3 to transform the likelihood by Bayes’ rule 
as 

𝑝(Δ𝑁𝑘|𝑥𝑘) =
𝑝(𝜆𝑘

−
|𝑥𝑘)𝑝(Δ𝑁|𝜆𝑘

+, 𝑥𝑘)

𝑝(𝜆𝑘
−
|Δ𝑁𝑘 , 𝑥𝑘)

. (9) 

where the firing probability 𝜆𝑘  in Eq. 9 can be directly 
conducted from the smoothed spike trains (labelled as 𝜆𝑘

−) or 
be determined by the conditional intensity function Eq. 2 
which is related to 𝑥𝑘 (labelled as 𝜆𝑘

+). Here, we assume 𝜆𝑘 in 
Eq. 9 is from the most directly condition to simplify the 
calculation. 𝑝(𝜆𝑘|𝑥𝑘) can be transformed by the conditional 
probability equation as 

𝑝(𝜆𝑘
−|𝑥𝑘) =

𝑝(𝑥𝑘|𝜆𝑘
−)𝑝(𝜆𝑘

−)

𝑝(𝑥𝑘)
, (10) 

where 𝑝(𝑥𝑘|𝜆𝑘
−) is the probability density of the movements 

decoded from the firing probability pattern which is conducted 
by smoothing the spike trains. This probability contains the 
information of neural connectivity and we use a clustering 
decoder to conduct it. 𝑝(𝜆𝑘

−) is the marginal probability of the 
firing probability which is regardless of 𝑥𝑘. And 𝑝(𝑥𝑘) is the 
marginal probability of the movement which can be estimated 
from the training data 

𝑝(𝑥𝑘) ∝
1

𝑄
Σ𝑞
𝑄𝜅(𝑥𝑘 − 𝑥𝑞), (11) 
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where {𝑥𝑞}𝑞=1
𝑄

 is the set of movement samples in training data, 

𝑄  is the number of training samples and 𝑞  is the index of 
training samples. For the probability of observation 
𝑝(Δ𝑁𝑘|𝜆𝑘

+, 𝑥𝑘), we assume the firing probability is conducted 
from Eq. 2 so that the probability of observation can be 
calculated by Eq. 7. 

Therefore, for the particles {𝑥𝑘
𝑖 }
𝑖=1

𝑁𝑠
, their weights {𝑣𝑘

𝑖 }
𝑖=1

𝑁𝑠
 

can be represented as 

𝑣𝑘
𝑖 ∝ 𝑝(Δ𝑁𝑘|𝑥𝑘

𝑖 ) =
𝑝(𝑥𝑘|𝜆𝑘

−
)

𝑝(𝑥𝑘)
Π𝑗=1
𝐽 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑘

𝑗
), (12) 

The posterior density is reconstructed as the Eq. 8, and the 
expectation of the movement on this density is output as the 
estimation. 

C. The Clustering Decoder in NCPP 

A clustering decoder is implemented in NCPP to consider 
the information of neural connectivity. This is because the 
clustering decoder estimates the movement according to the 
neural activity pattern instead of considering single neuronal 
behavior independently. A set of training samples 

{(𝑥𝑞 , 𝜆𝑞)}𝑞=1
𝑄

 is used to train the parameters of the clustering 

decoder where 𝑥𝑞  is the movement and 𝜆𝑞  is the 

corresponding firing probability. Nearest-neighbor clustering 
is implemented to assign the training samples into the 𝐶 
clusters according to the Euclidean distance, with the centers 

of the clusters {(𝑥𝑐 , 𝜆𝑐)}𝑐=1
𝐶 . Therefore, the probability of 

movement according to the clustering decoder can be 
represented as  

𝑝(𝑥𝑘|𝜆𝑘) ∝
1

C
Σ𝑐=1
𝐶 𝜅(𝑥𝑘 − 𝑥𝑐)𝜅(𝜆𝑘 − 𝜆𝑐), (13) 

The conducted probability in Eq. 13 will be used in Eq. 12 
to weight each particle to reconstruct the posterior density of 
the movement.  

III. RESULT 

In this section, we want to simulate a scenario where the 
traditional point process method based on the single neuronal 
tuning property cannot achieve a good decoding performance. 
NCPP and SMCPP are implemented and compared in this 

simulation. A two-dimensional trajectory {𝑋𝑘 = [𝑥, 𝑦]}𝑘=1
10000 

is generated according to the rat two-lever discrimination task. 
In this task, each trial records the trajectory from the rest stage 
(locating around [0,0] ) to lever-pressing (locating around 
[1,1] for high lever and [1, −1] for low lever), and then return 
to the rest stage as shown in the Fig. 1. Each trial contains 200 
data samples, and there are 50 trials generated including 25 
high-lever trials and 25 low-lever trials. A zero-mean Gaussian 
noise with 0.1 variance is added to both dimensions of the 
trajectory. 

The firing probability {𝜆𝑗}𝑗=1
3  are generated followed the 

group of the conditional intensity functions 

{

𝜆𝑘
1 = exp(0.3𝑥𝑘 − 1.4)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝜆𝑘
2 = exp⁡(0.21𝑥𝑘 + 0.214𝑦𝑘 − 1.14)

𝜆𝑘
3 = exp(0.24𝑥𝑘 − 0.18𝑦𝑘 − 1.2)⁡⁡⁡⁡⁡⁡

 (14) 

As shown in the Fig. 2 where the blue curves represent the 
firing probability of these three neurons, the first neuron can 
distinguish press or not. The second neuron has higher firing 
probability for pressing high lever while the third neuron has 
higher firing probability for pressing low lever. Meanwhile, 
the high background of the firing probability makes the point 
process observation is noisy which may result to a bad 
decoding performance. Finally, the spike trains are generated 
through a Bernoulli stochastic process with the firing 

probability {𝜆𝑗}𝑗=1
3 , which are shown in Fig. 2 as the red bars.  

70% of the simulation data are used to train the models. The 
transition function 𝐹 and 𝑅 is trained from the training data. 
The parameters of the conditional intensity function use the 
ground truth values as Eq. 14. The firing probabilities of 
training data are clustered into 5 clusters with the distance 
threshold 0.07. The number of clusters and the distance 
threshold is explored according to the decoding performance. 
Fig. 3 shows the distribution of the 5 clusters in the first two 
important dimensions of principal component analysis (PCA). 
The red cluster represents the rest stage. The blue cluster and 
the green cluster represent the movement reaching the low 
lever and the high lever respectively. And pressing low lever 
is represented by the black cluster while pressing high lever is 

 
Fig. 1. The simulated movement. The horizontal axis is the time index. The 

vertical axis of (a) is the position in x and the vertical axis of (b) is the 

position in y 

 
Fig. 2. The firing probability and the spike trains of three neurons. The 

horizontal axis is the time index, and the vertical axis is the firing 

probability. The blue lines represent the firing probability. Each red bar 

represents a spike. 
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the yellow cluster. The rest 30% of data are used in testing. 
500 particles are generated and propagated in the methods, and 
a gaussian kernel with 20-interval kernel size is used to smooth 
the spike trains for the clustering decoder. 

Fig. 4 shows a segment of the decoding results where the 
horizontal axis is the time index, and the vertical axis is the 
value of position. The red lines represent the ground truth of 
the trajectory. The result obtained by NCPP is represented by 
the black lines, and the result obtained by SMCPP is the blue 
lines. For the position in x, mean square error (MSE) between 
the ground truth and the result of NCPP is 0.3633 while that of 
SMCPP is 0.4349. And for the position in y, the MSE of NCPP 
is 0.4109 and that of SMCPP is 0.5191. The validation of MSE 
demonstrates that the decoding performance of NCPP is better 
than SMCPP. More specifically at the 3rd, 5th, 6th and 7th trials 
in the Fig. 4, the result of SMCPP cannot reach the pressing 
stage while the result obtained by NCPP can catch the stage. 
This is because the clustering result drive the state of point 
process to the right location. Therefore, considering the 

information of neural connectivity can help the point process 
method improve the decoding performance. 

IV. CONCLUSION 

The decoder in BMI can connect the neural activity and 
external environment or movement. A good decoder can help 
patients control external devices precisely and help us 
understand the mechanism of our brain. In the brain, the neural 
connectivity and single neuronal tuning property both 
contribute to encode the movement or stimuli. However, most 
decoders only consider the neural connectivity or the single 
neuronal tuning property. This may result to a biased model 
for the brain. In this paper, we propose a new decoder, NCPP, 
which considers the information of neural connectivity and 
single neuronal tuning property at the same time. We derive 
the neural connectivity part from the point process method and 
use a clustering decoder to represent the information of the 
neural connectivity. We validate NCPP on the simulation data 
and compare it to SMCPP. The results show that considering 
the neural connectivity can help the point process decoder 
improve the decoding performance. This indicates that our 
method can model the information of neural connectivity and 
single neuronal tuning property and has the potential to follow 
the two perspectives of neural adaptation at the same time. In 
the future, we will validate the method on real data and use it 
to track time-varying neural property. 
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Fig. 4. A segment of the decoding results. The horizontal axis is the time 
index, the vertical axis is the position in x and the position in y. The red line 

is the ground truth. The black line is the result obtained by NCPP, and the 

blue line is the result obtained by SMCPP. 

 
Fig. 3. The clustering result and the distribution of the firing probability 

pattern of the training data. The horizontal axis is the eigenvalue of the first 

important component of PCA. The vertical axis is the eigenvalue of the 

second important component of PCA. 
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