
  

 

Abstract— Positron emission tomography (PET) is a 

physiological, non-invasive imaging technique, which forms an 

essential part of nuclear medicine. The data obtained in a PET 

scan represent the concentration of an administered radiotracer 

in tissues over time. Quantitative analysis of PET data makes 

possible the assessments of in-vivo physiological processes. The 

Logan graphical analysis (LGA) is one of the methods that are 

used for quantitative analysis of PET data. LGA transforms 

PET data into a simple linear relationship. The slope of the LGA 

linear relationship is a physiological quantity denoting receptor 

availability. This quantity is termed distribution volume ratio 

(DVR). LGA-based estimates of the DVR are negatively affected 

by the noise in PET data —leading to the DVR being 

underestimated. A number of approaches proposed to address 

this issue have been observed to reduce the bias at the cost 

precision. An alternative regression method, least-squares cubic 

(LSC), was recently applied to estimate the DVR in order to 

reduce the bias. LSC was observed to reduce the bias in the 

LGA-based estimates. However, slight increases were also 

observed in the variance of the LSC-based estimates. This calls 

for methods to act against the variance in the LSC-based 

estimates. In this study, an alternative method is applied for 

tTAC denoising. This method is referred to as correlated 

component analysis (CorrCA).  CorrCA transform the data by 

searching for dimensions of maximum correlation. This 

technique is closely related to other well-known methods such as 

principal component analysis and independent component 

analysis. In this study, the data were denoised by CorrCA (to act 

against the variance in the estimate) and the DVR was estimated 

by LSC, which provides for minimal bias. The resulting method 

LSC-CorrCA, gave less-biased estimated with increased 

precision.  This was observed for both simulation results as well 

as for clinical data, both for 11C Pittsburgh compound B. 

Simulation data revealed reduced variances in LCS-CorrCA-

based estimates, and the clinical data showed improved contrast 

between gray and white matter regions. 

 
Clinical Relevance— Improved DVR estimates would ease the 

interpretation of medical images, which will in turn positively 

influence the clinical processes, from diagnosis to treatment and 

follow-ups. 

I. INTRODUCTION 

In this study we introduce an alternative technique for 
smoothing positron emission tomography (PET) data, prior to 
Logan graphical analysis (LGA).  
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Logan graphical analysis (LGA) is a well-known technique 
used for quantitative analysis of dynamic positron emission 
tomography (PET) data, for radiotracers that bind reversibly 
[1, 2, 3]. LGA can be referred to as a linearization technique. 
It takes PET tissue time-activity curves (tTACs) data and 
transform them into a two-variables linear relationship. The 
slope of this linear relationship is referred to as distribution 
volume ratio (DVR). DVR denotes the availability of target 
receptor, and can be defined as the ratio of distribution volume 
in a receptor-containing to non-receptor region [2]. 

LGA has been noted to be efficient in terms of both time 
and computing, for which it has been well accepted [3]. 
However, for noisy PET data, LGA estimates have been 
shown to be negatively biased [3, 4]. This noise-induced bias 
has been shown to increases with the magnitude of both the 
noise and the DVR [5]. 

Different approaches have been proposed to address the 
LGA bias problem [6, 7, 8, 9]. Most notably, these methods 
reduce the bias at the expense of precision. Recently, we 
applied a new approach —least-squares cubic (LSC)— for 
bias reduction in [10], and compared it to the ordinary least-
squares (OLS)-based LGA as well as the multilinear reference 
tissue model 2 (MRTM2) [8]. The LSC method performed 
better than both OLS and MRTM2 methods. LSC is a simple 
and direct approach; it simply replaces OLS with LSC to 
estimate the LGA slope parameter, the DVR. The specific 
details of the LSC regression method can be found in [11, 12, 
13]. The LSC-based LGA reduces the bias in the DVR 
estimates because it accounts for errors in both the predictor 
and response variables [10]. This aspect of LSC is well suitable 
for the LGA variables, because both the predictor and response 
variables of the LGA are noisy. It was however, observed that 
the LSC approach also caused a slight decrease in precision, 
observed in terms of slightly increased variance in the 
estimates. 

To minimize the influence of increased variance on the 
image quality, in this study we employed a tTAC denoising 
technique, Correlated component analysis (CorrCA) [14]. 
CorrCA is a relatively new method for feature extraction and 
dimension reduction, and to the best of our knowledge has 
never been previously applied to quantification of in-vivo 
radiotracer binding. In this approach, tTAC data are denoised 
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by CorrCA and the DVR is estimated by LSC. Henceforth, we 
thus refer to this method as LSC–CorrCA. 

The results obtained from the LSC–CorrCA method were 
compared to those of the LSC on its own, as well as the OLS-
based LGA. The results were compared in terms of bias and 
variance in the DVR estimates for simulation results data. 
Clinical data were compared in terms of contrast between grey 
and white matter of 11C Pittsburgh compound B (11C-PiB) 
binding to beta amyloid (Aβ) plaques. 

II. METHOD 

A. Logan graphical analysis 

By applying differential calculus to PET data, the LGA [1] 
can be obtained in the form of the equation below; 

∫ 𝐶(𝑢)𝑑𝑢
𝑡

0

𝐶(𝑡)
= 𝐷𝑉𝑅 {

∫ 𝐶𝑅(𝑢)𝑑𝑢
𝑡

0

𝐶(𝑡)
} + 𝑖𝑛𝑡. (1) 

The terms 𝐶(𝑡)  and 𝐶𝑅(𝑡)  in (1), represents the 
radioactivity in a tissue of interest and the reference tissue, 
respectively. The tissue of interest consists of the target 
receptors. On the other hand, the reference tissue is such that 
it has a negligible volume of target receptors. 

Term 𝑖𝑛𝑡 in (1) becomes constant against time after some 
time 𝑡∗ . Consequently, (1) turns into a simple linear 
relationship between the two fraction terms, with slope DVR. 

The use of a linear regression method on (1) will then allow 
for the estimate of the slope parameter DVR. In this study, the 
LSC regression method is employed. 

 

A. Correlated component analysis 

CorrCA is also a feature extraction method. CorrCA 
operates by identifying components that are maximally 
correlated between repetitions in multivariate data [14]. 
Specifically, CorrCA maximizes the ratio of “between-
repetition to within-repetition” covariance. In the context of 
our application to PET data, our repetitions are along the slices 
dimension. CorrCA will therefore maximize the ratio of 
between-slices to within-slices covariance. This ratio is 
referred to as inter-subject correlation (ISC) [14]. Specifically 
in our context, it translates to inter-slice correlation. 

Consider a set of dynamic PET brain volume data arranged 
as an array of size q × p × M, where M denotes the number of 
slices, q denotes the number of voxels in a slice, and p denotes 
the number of time points (frame numbers). CorrCA identifies 
directions in the p-dimensional space along which the tTACs 
maximally correlate between M slices, with correlation 
measured across q voxels. 

CorrCA is closely related to the well-known principal 
component analysis (PCA). Let us put it into perspective in 
comparison to PCA applied to the same data. For the PCA 
case, we can represent the brain volume as an R × p array, 
where 𝑅 =  𝑞 ∗ 𝑀, denotes the total number of voxels in the 
whole brain volume. PCA returns a set of p-dimensional 
vectors which successively capture the variance in the data in 
a descending order. Similarly, CorrCA returns a set p-

dimensional vectors which successively capture the ISC in a 
descending order. CorrCA also formulates into an eigenvalues 
and eigenvectors problem, from which the p-dimensional 
orthogonal vectors (and correlated components) are found as 
the eigenvectors, and ISCs as the eigenvalues. Maximizing the 
between-slices to within-slices covariance maximizes the 
mean-over-variance across slices, which has been asserted to 
define a signal-to-noise ratio [14]. 

For a brief mathematical outline of CorrCA as presented 
in [14], let the observed noisy tTACs be, 

𝑥𝑖
𝑗
= [𝑐𝑖

𝑗(𝑡1), 𝑐𝑖
𝑗(𝑡2),⋯ , 𝑐𝑖

𝑗
(𝑡𝑝)]

𝑇
, where i = 1, 2, …, q and j 

= 1, 2, …, M. (T denotes a transpose). Thus, 𝑥𝑖
𝑗
∈ ℝ𝑝×1 is the 

ith voxel in the jth slice. This voxel can be represented as, 

𝑥𝑖
𝑗(𝑡) = 𝐴𝑦𝑖

𝑗
+ 𝜀𝑖

𝑗
, (2) 

where 𝐴 ∈ ℝ𝑝×𝑘  (𝑘 ≤ 𝑝 ) is a projection matrix to be 

constructed by CorrCA; 𝑦𝑖
𝑗
∈ ℝ𝑝×1 is the coefficient vector; 

and 𝜀𝑖
𝑗
∈ ℝ𝑝×1is the residuals vector. 

The jth slice can be written as, 

𝐶𝑗 =

[
 
 
 
 𝑐1

𝑗(𝑡1) 𝑐1
𝑗(𝑡2) ⋯ 𝑐1

𝑗
(𝑡𝑝)

𝑐2
𝑗(𝑡1) 𝑐2

𝑗(𝑡2) ⋯ 𝑐2
𝑗
(𝑡𝑝)

⋮ ⋮ ⋱ ⋮

𝑐𝑞
𝑗(𝑡1) 𝑐𝑞

𝑗(𝑡2) ⋯ 𝑐𝑞
𝑗
(𝑡𝑝)]

 
 
 
 

𝑞×𝑝

, (3) 

and the whole brain data as, 

𝐶 = [𝐶1 𝐶2 ⋯ 𝐶𝑀]𝑞×𝑝×𝑀 . (4) 

The objective of CorrCA is to find a linear combination 

of the p measurements (𝑦𝑖
𝑗
), defined as, 

 �̂�𝑖
𝑗(𝑡) = 𝑉𝑻𝑥𝑖

𝑗
,   (5) 

such that the correlation across M slices is maximized —
where 𝑉 ∈ ℝ𝑝×1 is a projection vector. The projection matrix 

𝑉  is a set of eigen vectors referred to as correlated 

components. They are such that the first component 
corresponds to the direction of maximum correlation across M 
slices, i.e. (largest ISC). The second component correspond to 
the direction with second largest ISC and so forth, until the last 
component which corresponds to the direction with the least 
ISC. 

In matrix format, (2) can be written as, 

𝑋|𝑝×𝑞×𝑀 = (𝐴|𝑝×𝑘)(𝑌|𝑘×𝑞×𝑀) + 𝜀|𝑝×𝑞×𝑀.  (6) 

The least-squares estimate of 𝐴 is, 

�̂� = 𝑅𝑊𝑉(𝑉𝑇𝑅𝑊𝑉)−1. (7) 

𝑅𝑊 is the within-slice covariance matrix, which together 
with the between-slice covariance matrix, 𝑅𝐵, defines the ISC 
(ρ) as, 

𝜌 =
1

𝑀 − 1

𝑉𝑇𝑅𝐵𝑉

𝑉𝑇𝑅𝑊𝑉
. (8) 

The covariance matrices 𝑅𝑊 and 𝑅𝐵 are given by, 
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𝑅𝑊 = ∑ ∑(𝑥𝑖
𝑗
− �̅�∗

𝑗
)

𝑀

𝑗=1

𝑞

𝑖=1

(𝑥𝑖
𝑗
− �̅�∗

𝑗
)
𝑇
 (9) 

𝑅𝐵 = ∑ ∑ ∑ (𝑥𝑖
𝑗
− �̅�∗

𝑗
)

𝑀

𝑘=1,𝑘≠𝑗

𝑀

𝑗=1

𝑞

𝑖=1

(𝑥𝑖
𝑘 − �̅�∗

𝑘)
𝑇
. 

(10) 

Analogous to using only a few principal components in 
PCA, here, using only the first few 𝑘 (𝑘 ≤ 𝑝) correlated 
components with the highest ISC values in (6) and (7), 
denoised tTACs can be estimated as per (2) as, 

�̂� = �̂��̂�. (11) 

In short, it can be inferred that CorrCA performs PCA on 
the matrix of the ratio of between-slices to within-slices, 
𝑅𝐵(𝑅𝑊)−1, of which the eigenvalues define the ISC. In this 
study, the tTACs were denoised with only two components. 

CorrCA was computed using the MATLAB codes 
provided by Parra and colleagues [19], available at 
http://parralab.org/corrca. 

III. PROCEDURE 

The study was conducted for both simulation and clinical 
data. A set of voxel-based gray matter simulation data 
mimicking 11C Pittsburgh compound B (11C-PiB) were used. 
This is because the clinical data analysed in this study are of 
the same radiotracer. 11C-PiB reversibly binds to beta amyloid 
(A𝛽) plaques in the brain, and the A𝛽 plaques are associated 
with Alzheimer’s disease (AD). 

Eleven noise-free tTACs representing 11 known 𝐷𝑉𝑅 
values were formed. Statistical noise was added to these noise-
free tTACs, then for each noise-free tTAC, 1024 noisy tTACs 
were formed. The 𝐷𝑉𝑅 values were then re-estimated from the 
noisy tTACs by three methods, LSC-CorrCA, LSC and OLS. 
Simulation parameters are similar to those used in [16]. 

Clinical data consisted of 11C-PiB PET data of a cohort of 
11 A𝛽-negative subjects. The scan was carried out for 70 
min in 25 frames (6 × 10 s, 3 × 20 s, 2 × 1 min, 2 × 3 min, and 
12 × 5 min). 𝐷𝑉𝑅 parametric images were then obtained from 
the dynamic PET images by three methods, LSC-CorrCA, 
LSC, and OLS. 

These 11C-PiB parametric images were compared in terms 
of the contrast between the four main gray matter cortices 
(frontal, temporal, occipital, and parietal) and white matter 
(corona radiata). Cerebellum gray matter region was used for 
the reference region. 

The contrast was calculated as [15]: 

𝐶 =
𝜇𝑊 − 𝜇𝐺

𝜎𝑊 − 𝜎𝐺

,               (12) 

where 𝜇𝐺 and 𝜇𝑊 respectively represent the mean 𝐷𝑉𝑅 of 
the gray and white matter regions, and alike, 𝜎𝐺  and 𝜎𝑊 
respectively represent the standard deviations of 𝐷𝑉𝑅 in the 
gray and white matter regions. 

IV. RESULTS AND DISCUSSION 

Fig. 1 shows an example of a simulated noise-free tTAC, a 
corresponding noisy tTAC and the corresponding CorrCA-
denoised tTAC. It can be seen that the denoised tTACs are 
almost similar to the noise-free tTAC, indicating the efficiency 
of CorrCA denoising.  

In Fig. 2, the three methods are compared in terms of 
average DVR recovered from the noisy tTACs. A 100% would 
mean that the method is unbiased. Here, we see that the LSC-
CorrCA estimates are as less biased as the LSC estimates. The 
advantage of LSC-CorrCA is highlighted in this figure, in 
which LSC-CorrCA estimates shows the smallest deviations 
in the estimates, based on which the parametric images are 
expected to be less noisy compared to those of LSC. 

Fig. 3 compares the average grey-white matter contrast, 
calculated for 11 A𝛽-negative subjects, of DVR images 
obtained by the three methods. We see that the LSC-CorrCA 
method gives the highest contrast values. Further, the 
Friedman post-hoc multiple comparison p-values of   the 
contrast comparison are 0.001 and < 0.001 for LSC-CorrCA 
compared to LSC and OLS. We can therefore say that LSC-
CorrCA has significantly improved the contrast of DVR 
parametric images. 

In Fig. 4 we can visually see the difference between the 
DVR images obtained by the three methods. OLS images 
shows low DVR estimates, confirming the underestimation. 
LSC images shows high DVR estimates (compared to OLS), 
with slight noise components. LSC-CorrCA shows the highest 
DVR estimates, and the noise components that are in LSC 
images cannot be seen in LSC-CorrCA images —in agreement 
with all Figs 1 – 3. 

 

 
Figure 1. An example of simulated noisy tTAC, and the 
corresponding noise-free tTAC, as well as the CorrCA-denoised 

tTAC. 
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Figure 2. The recovered percentage of the average (N = 1024) 𝐷𝑉𝑅 

values estimated from noisy tTACs using the three methods, LSC-
CorrCA, LSC, and OLS. The error bars show the standard 

deviations. 

 

 

 
Figure 3. Box plots of the average contrast between grey matter 

cortices, Frontal, Temporal, Occipital and Parietal, and white matter, 

Coronal cortex, calculated the 11 A𝛽-negative subjects. 

 

 

 
Figure 4. Slices of DVR parametric images of an A𝛽-negative 

subject, as obtained by the three methods. 

 

V. CONCLUSION 

The results of the method employed in this study, LSC-

CorrCA, showed reduced variance in the DVR estimates for 

simulation results. In clinical data, in Fig. 4, improved DVR 

images were obtained for LSC compared to both LSC and 

OLS. Specifically, the LSC-CorrCA images gave high 

contrast values, and show a smooth distribution of DVR 

across the slice, with no noise components as those seen in 

LSC-based images. These results could be significant for 

quantitative analysis of A𝛽 in AD patients. The combination 

of LSC and PCA (LSC-PCA) has been conducted in [16]. 

Future work will assess the performance of LSC-CorrCA and 

LSC-PCA. 
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