
  

 

Abstract—Neuropsychiatric disorders involve complex 

polygenic determinants as well as brain alterations. The 

combination of genetic inheritance and neuroimaging 

approaches could advance our understanding of psychiatric 

disorders. However, cross-disorder overlap is a current issue 

since psychiatric conditions share some neurogenetic correlates, 

symptoms, and brain effects. Exploring the impact of genetic 

risk on the brain across disorders could help understand 

commonalities across multiple psychopathologies. To do this, we 

first compute the linear relationship between PRS and voxel-

wise grey matter volume to generate brain maps for five 

psychiatric and three control traits. Next, we use the biclustering 

approach to identify regions of the brain associated with 

polygenic risk scores in one or more traits. Our results 

demonstrate a significant overlap in brain regions connected to 

polygenic risk across psychiatric traits. Moreover, such brain 

domains are highly allied with the polygenic risk for non-

psychiatric control traits. This multi-trait overlap characterizes 

the nonspecific relationship between neural anatomy and 

inherited risk factors in psychiatric conditions, and in some 

cases, the overlap in neural features linked to genetic risk for 

non-psychiatric attributes.  

 
Clinical Relevance— This study presents biclusters of 

multiple psychiatric and control traits. The analysis reported 

various brain regions, including cerebellum, cuneus, precuneus, 

fusiform, supplementary motor area, that show significant 

correlation with polygenic risk scores across diverse groups of 

psychiatric conditions and non-psychiatric control traits. 

I. INTRODUCTION 

Idiopathic psychiatric disorders are polygenic – many 
genetic loci of minimal effects influence risk and, in some 
cases, have been linked to neuroimaging data which are 
thought to play a significant role in the biological foundation 
of brain disorders [1-3]. A considerable amount of research has 
been carried out to explore the genetic liability [4-7] and neural 
associations [8, 9] of psychiatric disorders. Researchers have 
recently started probing the combination of polygenic and 
neuroimaging modalities to explain the underlying dynamics 
of these illnesses [7, 10, 11]. Given the lack of common high 
penetrance loci, researchers have begun examining genetic 
background in aggregate with a polygenic risk score (PRS) - a 
measure of the overall genetic risk an individual carries for a 
disorder [10, 12, 13]. PRS association studies have already 
reported pivotal linkage with various diseases [14-17]. 
Additionally, phenome-wide PRS association studies evaluate 

 
 

the alliance between genetic liability for a given trait and 
hundreds of diverse health outcomes [14, 18]. The evidence 
for neuro-genetic alliance in psychiatric conditions provokes 
the joint analysis of these modalities to understand the disease 
better. Studying the insightful shared space between neural 
and genetic information can potentially facilitate the research. 
Psychiatric abnormalities have significant overlap in both 
genomic coding and neural functioning. Thus, studying 
multiple traits can ease our investigation scheme and help 
researchers alleviate the trait-specific shortcomings, e.g., lack 
of test subjects, hardship in data collection, etc. Furthermore, 
inspecting multiple traits together helps to formulate more 
generalized and robust biomarkers for the disease. With that 
spirit, here, we aim to examine the association between the 
polygenic risk score (PRS) and the grey matter volume (GMV) 
of the brain. We compute the linear regression slope (beta 
map) between PRS and GMV in various physiological 
conditions. Exploring neural associations both across and 
between different traits due to polygenic risk could help guide 
future research regarding the development of more targeted 
treatments. This is especially needed given that current cross-
disorder treatment studies  [19-21] either a) largely focus on 
comorbidity within a single subject who expresses multiple 
psychiatric traits rather than the neurogenetic homogeneity 
across psychopathologies or b) mostly confined to a single 
modality (genetics or imaging).  

Here, we generate beta maps for five psychiatric 
[schizophrenia (SZ), bipolar disorder (BPD), major depressive 
disorder (MDD), autism spectrum disorder (ASD), attention-
deficit hyperactivity disorder (ADHD)], and three control 
traits [height (H), type 2 diabetes (T2D), and inflammatory 
bowel disease (IBD)]. The beta maps represent the voxel-wise 
linear slope between the PRS and grey matter volume across 
various subjects for each trait. Next, we employ a biclustering 
framework to study the similarity of beta values across a subset 
of traits and brain regions. Biclustering is a two-dimensional 
data mining technique that allows simultaneous clustering of 
rows (traits) and columns (voxels with beta values) of a two-
dimensional data matrix [22]. Selecting biclustering is 
intuitive because we aim to analyze the homogeneity across 
two dimensions, traits and the brain regions. The biclustering 
procedure extracts similar beta values across the attributes by 
grouping them together. The objective is to approximate a 
concise multi-modal subspace among the physiologies. The 
method considers highly positive and negative beta values 

1 ,2Md Abdur Rahaman, 3Amanda Rodrigue, 3David Glahn, 2Jessica Turner, 1, 2Vince Calhoun 

1Georgia Institute of Technology, Atlanta, GA, USA 
2Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, 

Georgia Institute of Technology, Emory University, Atlanta, GA, USA  
3Department of Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA 

 

 

Shared sets of correlated polygenic risk scores and voxel-wise grey 

matter across multiple traits identified via bi-clustering 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 2201



  

separately and returns both positive and negative GMV/PRS 
associations. Our experimental results produced eight 
biclusters divided into three categories –  only control traits, 
only disorder traits and all traits. Domains exhibiting 
significant GMV-PRS association include the cerebellum, 
cuneus, calcarine, precuneus, and supplementary motor area. 
Future research can use these regions to evaluate combined 
hypotheses on various traits. Moreover, these overlaps may tap 
into common mechanisms that would be relevant for more 
than one disorder.       

II. DATA COLLECTION AND PREPROCESSING 

A. Participants  

The participants in this study were part of the UK Biobank 
(www.ukbiobank.ac.uk), a population-based prospective 
cohort of ~500,00 individuals, ages 40-69 years, and recruited 
between 2006 and 2010 throughout Great Britain. Recruitment 
procedures for the UK Biobank are described in this study 
[23]. Analyses were performed on a subsample of biobank 
participants [N=31,616, mean age (standard deviation) = 63.5 
(7.4), 46% male] that passed our genetic and imaging quality 
control procedures described below.              

Table 1. Discovery Sample Genome-wide Association Summary 
Statistics 

 
Disorder Citation1 Sample 

Size2 

Number of 
Overlapping 

Variants 
with UK 
Biobank3 

SZ Ripke, S. et al. [24] 43,456/ 
33,640 

803,029 

BPD Stahl, E.A. et al. [16] 31,358/ 
20,352 

7993,96 

MDD Wray, N.R. et al. [17] 95,680/ 
43,204 

792,206 

ASD Grove, J. et al. [25] 27,969/ 
18,382 

792,722 

ADHD Demontis, D. et al. [26] 34,194/ 
19,099 

779,137 

Height Wood AR, et al. [27] 252,149 699,512 
T2D Bonàs-Guarch S et al. [28] 57,196/ 

12,931 
798,466 

IBD Liu JZ et.al. [15] 21,770/ 
12,882 

794,364 

 

1 All GWA results were restricted to European cohorts and excluded 
participants from the UK Biobank. 

2 Sample size is noted for controls/cases where applicable. 
3 Column indicates the number of variants included in the PRS 

calculation as weights were only assigned to variants overlapping between 
discovery and target samples. 

 

B. Polygenic Risk Score (PRS) calculation 

We computed the polygenic risk score (PRS) for the five 
psychiatric conditions and three control traits mentioned 
earlier with PRS-CS [29]. PRS-CS is a python-based 
command-line tool that implements Bayesian regression to 
place continuous shrinkage priors on single nucleotide 
polymorphism (SNP) effect sizes using genome-wide 
association (GWA) summary statistics and an external linkage 
disequilibrium (LD) reference panel (1000 Genomes Project 
European samples: N=503). Such a framework allows for 
adaptive shrinkage based on GWA signals from a discovery 
sample while modeling local LD patterns; LD blocks are 
updated jointly in a multivariate fashion, in contrast to 

updating the effect sizes separately and sequentially for each 
marker. Thus, PRS-CS can accommodate diverse genetic 
architectures and avoids the need for pruning and GWA 
threshold selection, which can often discard valuable LD 
information and limit prediction accuracy in subsequent target 
samples [30]. Details related to GWA summary statistics used 
to calculate the PRS for each trait are noted in Table 1. We 
excluded variants with INFO < 0.8 (where possible) and 
filtered GWA results for ambiguous and duplicated SNPs. 
Details regarding blood sample ascertainment, processing, and 
handling, and genotyping, and imputation in the UK Biobank 
are described in Peakmann et al. [31] and Bycroft et al. [32]. 
We also removed variants if the MAF < 0.01, INFO < 0.8, 
HWE p-value < 1x10-6, or missingness was > 0.01). We then 
took the intersection between the remaining subjects and those 
passing imaging quality control (QC). Plink v1.9 
(http://pngu.mgh.harvard.edu/purcell/plink/) [33] was used for 
IBD estimation and further pruning related individuals from 
the sample (PI-HAT > 0.2), resulting in 31,616 individuals 
available for analysis. Although we limited our participants to 
those in the white British ancestry cohort, there is nontrivial 
genetic variance due to ancestry even within an ethnic group 
[34]. As such, we performed principal component analysis 
(PCA) with the LD-pruned imputed data and obtained ten 
ancestry PCs to adjust PRS scores for these effects. After 
preprocessing, PRS-CS was used to generate weights for 
overlapping variants between discovery GWA samples and the 
UK Biobank for each trait. The resulting weights were applied 
to the imputed genotypes in the UK Biobank to calculate the 
final trait-wise PRS via the PLINK score command. Last, PRS 
was standardized and residualized for the previously described 
10 ancestry PCs. 

B. Neuroimaging data acquisition and analysis   

The UK Biobank Imaging Working Group designed 
imaging protocols (www.ukbiobank.ac.uk/expert-working-
groups); the additional details are described in Alfaro-
Almagro, et al.[35]. Each imaging center was equipped with a 
32-channel head coil and used the following 3D MPRAGE 
protocol to quantify brain structure: T1-weighted, 

TI/TR=880/2000 ms, sagittal acquisition, resolution=1.0  1.0 

 1.0 mm, FOV= 208  256  256, in-plane acceleration 
factor=2, 4 min 54 sec scan duration. Voxel-based 
morphometry (VBM) analyses were performed with FMRIB 
Software Library v5.0.10 (FSL) [36] and included all imaging 
data available from the UK Biobank as of 7/13/20 (N=39,676). 
The image preprocessing was identical to that in Rodrigue et 
al. [37] and included generating a study-specific template. For 
quality assurance, we correlated the registered T1 image for 
each participant with the study-specific template and 
eliminated those individuals with a correlation less than 0.78 
(N=1,829). A total of 31,616 participants remained after this 
QC procedure and after applying the exclusionary genetic 
filters. Voxel-wise output was used as the dependent variable 
in a general linear model (GLM) implemented with FSL's 
randomize v6.0.3 [38] using a polygenic risk score as a 
predictor covarying for age, sex, and scanning site.  

III. METHODOLOGY 

Our biclustering approach has two basic modules. First, we 
collect beta values for each trait and sort them using standard 
statistics. Then we apply biclustering on these trait-wise beta 
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maps. The biclustering framework adapts an N-way 
exploration of all possible subgroups of incoming sets. The 
input to the N-way search is a set of elements where each 
element could be a vector or matrix with an arbitrary size. All 
the required scripts for the algorithmic implementation and 
post hoc analysis are developed in MATLAB. We run the 
analysis on high-performance computing nodes in a 
distributed setting.     

 

Figure 1. The architecture for biclustering the traits. It takes polygenic risk 

score (PRS) and gray matter volume (GMV) to create the beta maps for five 

psychiatric disorders and three control traits. The beta maps are sorted and 
thresholded for apprehending more associated brain domains. The sorted 

traits are sent through an N-way biclustering algorithm (N-BiC). It uses the 

modified depth-first search (mDFS) for exploring all possible combinations 
of input instances and an F1 similarity index for validation by controlling the 

overlaps in both dimensions.   

A.  Sorting the beta values  

We generated a three-dimensional brain map for each trait 
where the voxel values denote the correlation between GMV 
and PRS. To make the inputs consistent for the biclustering 
algorithm and to reduce noise from weakly associated voxels, 
the submodule thresholds the beta values. For each beta map, 
it computes a positive mean and selects voxels with beta values 
≥ positive mean. Similarly, it takes the mean across the 
negative beta values and selects voxels with beta values ≤ 
negative mean. This step generates a subset of voxels more 
strongly related to PRS, both highly correlated and anti-
correlated. We also mask the beta maps to avoid ventricles and 
other brain regions that often show artifactual associations. We 
created a mask using the identical dimensions as the beta maps 
and assign ventricle voxels to zero. After thresholding, each 
trait becomes a vector of voxel indices, and each trait can 
contain a different number of voxels. We check multiple 
approach for sorting the beta-values and an exhaustive  
exploration that requires more time to run the algorithm.  

B. N-way biclustering the traits  

The main idea of biclustering voxels is to extract meaningful 
relationships/patterns across various subsets of traits via a 
depth-first-search algorithm [39]. We adopt a modified depth-
first search (mDFS) based exploration technique called 'N-
BiC' for checking all possible combinations of traits [40]. For 
each combination, the voxels are intersected across the traits 
to generate a common subspace. Since mDFS aims to explore 
all possible combinations of the input instances, the time 

complexity grows exponentially with a brute-force approach. 
As such, the algorithm tweaks the searching technique by 
treating it as a graph traversal problem. It considers the inputs 
(list of vectors) as a set of vertices in an undirected graph. 
Then, mDFS seeks to create edges among those nodes by 
satisfying some user-defined constraints. It integrates an early 
abandoning technique dependent on user-defined parameters 
on the resulting biclusters. It stops extending the branches 
where it could not acquire enough homogeneous voxels after 
the intersection. The parameters are, 

S: List of sorted input instances (i.e., traits)  
N: Minimum number of voxels in a bicluster 
M: Minimum number of traits in a bicluster 
O: Overlap between biclusters  

For every subset of input instance, mDFS evaluates an 
intersection between the traits and tries to augment the set for 
more traits depending on the validation - constraints on input 
parameters N, M, and O. Following a depth-first paradigm; it 
uses backtracking for traversing different branches of the 
search tree. The searching scheme depends on the feedback 
from the validator to abandon a branch for exploration. If the 
earlier iteration results in an inadequate bicluster, the 
algorithm stops exploring the path and backtracks to an earlier 
point. The validator computes the overlapping ratio with the 
biclusters that have already been listed. Here, we use the F1 
similarity index to investigate the overlap between any earlier 
reported biclusters [41, 42]. The F1 similarity index is defined 
as follows for any two arbitrary biclusters A and B, 

F1 (A, B)= 
2|A∩B|

|A|+|B|
 

|A⋂B| = Size after intersection ;  VA∩B × TA∩B  

|A| = Size of A; i.e., the number of voxels × traits  

|B| = Size of B; i.e., the number of voxels × traits 

After traversing the search space for a given set of the input 
stream, mDFS continues the iteration for different 
permutations of the input sequence. That ensures the 
robustness of the algorithm for any sequence of input data. We 
collect biclusters that show stability across the permutations. 
Following the thresholds determined in previous studies [40, 
43], the minimum number of voxels required in a bicluster was 
one-fourth of the size of a beta map (91×109×91), and the 
minimum number of traits was two. The biclusters represent 
the overlap of associations between grey matter volume and 
polygenic risk score across a subset of traits.  

IV. RESULTS 

The biclusters show diverse associations between PRS and 

GMV patterns in the brain. Figure 2 shows eight biclusters 

estimated by our analysis. These clusters demonstrate cross-

trait similarity in GMV-PRS association in distinct regions of 

the brain. The first bicluster includes two control traits, height 

H) and inflammatory bowel disease (IBD); we observe a  

positive association in the right and left cerebellum crus, right 

fusiform gyrus, and a strong negative association in the right 

cerebellum_4_5. In the second bicluster, three traits (SZ, IBD, 

and T2D) showed overlap in the left precuneus and calcarine 
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sulcus (positive). The third cluster showed similarity in both 

left anterior and posterior cingulum in Height and T2D. 

Between ASD and T2D (cluster 4), the left precuneus is 

positively correlated with polygenic risk score (PRS), and the 

cerebellum crus is anti-correlated. SZ, ASD, and H overlap in 

cerebellum crus and vermis regions - negatively associated 

with the PRS (cluster 5). Bicluster 6 comprises three 

psychiatric traits MDD, ASD, and ADHD. These traits have 

similar beta values in the left cuneus, precuneus, and 

paracentral lobule (all positive) and left olfactory negative). 

Bicluster 7 also combines three psychiatric traits SZ, BPD, and 

MDD, including strong positive relationships in the precuneus 

and superior occipital regions and a negative relationship in 

the cerebellum crus. The last bicluster includes three 

psychiatric traits SZ, ADHD, MDD, and one control trait, 

T2D. There was a substantial overlap in the right and left 

cerebellum_8 (negative association). The boxplots in figure 3 

show the overall distribution of beta values: GMV-PRS 

relationships of biclusters throughout the brain. Bicluster 2 

and 8 demonstrate significantly higher positive and negative 

betas, respectively. Clusters 1 and 2 also showed positively 

skewed betas. Bicluster 4, 5, and 6 show weakly skewed 

negative beta values in overlapping brain domains. We further 

examine the domain-wise beta values of the biclusters. We 

compile a list of regions from all the biclusters (figure 2), 

showing significant GMV-PRS associations. We extracted 

domains with top 5 percent beta values from the max-slice we 

visualize in figure 2 using a python script in NiBabel 

(https://nipy.org/nibabel/).  In figure 4, bicluster 1 and 2 show 

a positive correlation in cerebellum crus, where the rest of the 

biclusters exhibit a negative association. Cerebellum crus has 

been linked to divergent thinking [44], often disrupted by 

psychiatric conditions. The left cingulum (anterior and 

posterior) regions remain positively associated with almost all 

biclusters except 8. The cerebellum crus and cerebellum 6 &  

 

Figure 3. Boxplots for bicluster-wise beta values. The red line inside the box 
represents the population's mean, and the top and bottom lines demonstrate 

the highest and lowest values, respectively. The red data points outside the 

whisker are the outliers. We run a one-sample t-test with a null hypothesis of 
'the mean is zero' to check whether the mean is significantly nonzero. The t-

test rejects the null hypothesis for all the biclusters at a significance level of 

0.001 (1%).     

8 are negatively associated with the traits included in bicluster 

3, 4, 5, 6, 7, and 8. The high negative correlation indicates a 

reverse association between grey matter volume and PRS. 

The cerebellum is a well-studied region of the brain in major 

psychiatric disorders [45, 46]. The distinctive beta 

relationship patterns in cerebellar subdomains explains the 

dynamics better in different psychiatric traits. With the 

prevalence of psychiatric traits in the biclusters, we observe 

the patterns in the remaining domains. In bicluster 5, SZ and 

Figure 2. Results of the Bicluster Analysis. The positive and negative biclusters are extracted separately and then merged for common traits. The traits are 

Schizophrenia (SZ), Bipolar disorder (BPD), Major depressive disorder (MDD), Autism spectrum disorder (ASD), Attention deficit hyperactivity and 

impulsive disorder (ADHD), and three control traits Height (H), Type 2 diabetes (T2D), Inflammatory bowel disease (IBD). We found eight biclusters, six 
of which show overlap in positive and negative beta values, and two (6th and 8th) which show overlap in negative voxels only. The voxel values in the brain 

map of each bicluster indicate the mean betas across the traits included in the bicluster. We selected the slice with maximum beta value and overlayed it on 

standard template ‘spm152’ using MRIcroGL for visualization. The color bar is consistent for all the maps. 
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ASD reveal negative PRS-GMV relationships in the left 

calcarine sulcus, cuneus, and vermis; positive in the 

precuneus and right fusiform. A closer view of bicluster 6 and 

7 reveal distinct beta patterns for MDD, ASD, 

and ADHD – all positive except cerebellum, left calcarine is 
zero. For SZ, BPD, and MDD, the GMV-PRS correlation 
pattern is organized as almost no association in the cingulum 
and calcarine; positive in cuneus and precuneus; negative in 
right fusiform and vermis. The vermis, precuneus, fusiform 
gyrus, and cingulum brain regions are affiliated with a variety 
of complex functions, including cognition, memory 
processing, facial recognition, etc. [46-50]. Therefore, the 
changes in those regions result in different psychiatric 
attributes of a person. The last subgroup's overlaps are mostly 
anti-correlated with PRS. The strength of this overlap is also 
consistent across domains (bicluster 8).  

V. CONCLUSION 

We implement a biclustering framework for analyzing the 
relation between the polygenic risk score and the grey matter 
volume of the brain in multiple psychiatric and control 
conditions. The contributions of this study are two-folded. 
First, we propose betas for capturing the neurogenetic 
association for a set of psychiatric and control traits, and 
secondly, bicluster them to identify similar betas among those 
traits throughout the brain. The beta value represents how 
likely a voxel is connected to the risk score of the disorder. So, 
the biclusters characterize the most relevant regions of the 

brain linked to one or more physical conditions. These results 
from biclustering are qualitatively more insightful than one-
dimensional clustering. The subgroups are tightly coupled 
andhighlight the benefits of focusing on homogeneous subsets 

of data across multiple disorders and brain regions. The results 
also reveal the level of association between the grey matter and 
PRS in a distinct subgroup of psychiatric and control traits. 
Future studies are needed to evaluate the implications of these 
results and their links with other behavior and clinical 
measures. A promising future direction of this project is to 
improve the runtime by reducing the search space. There are 
also benefits to making the approach permutation invariant by 
modifying the traversal process in the backtracking step. 
Future work will focus on analysis of the PRS values directly.    

VI. COMPLIANCE WITH ETHICAL STANDARDS 

Informed consent was obtained from each participant prior to 
scanning in accordance with the Internal Review Boards of 
corresponding institutions. 
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