
  

 

 

Abstract— SARS-CoV-2 has emerged to cause the outbreak of 

COVID-19, which has expanded into a worldwide human 

pandemic. Although detailed experimental data on animal 

experiments would provide insight into drug efficacy, the 

scientists involved in these experiments would be exposed to 

severe risks. In this context, we propose a computational 

framework for studying infection dynamics that can be used to 

capture the growth rate of viral replication and lung epithelial 

cell in presence of SARS-CoV-2. Specifically, we formulate the 

model consisting of a system of non-linear ODEs that can be used 

for visualizing the infection dynamics in a cell population 

considering the role of T cells and Macrophages. The major 

contribution of the proposed simulation method is to utilize the 

infection progression model in testing the efficacy of the drugs 

having various mechanisms and analyzing the effect of time of 

drug administration on virus clearance. 

Clinical Relevance—The proposed computational framework 

incorporates viral infection dynamics and role of immune 

response in Covid-19 that can be used to test the impact of drug 

efficacy and time of drug administration on infection mitigation. 

I. INTRODUCTION  

In December 2019, a serious outbreak occurred in China due 

to coronavirus, which is named as the novel COVID-19. The 

novel COVID-19, which caused this infection belongs to the 

family of SARS, a Severe Acute Respiratory Syndrome 

(SARS-CoV) [1]. The SARS-CoV-2 exponentially expanded 

across the globe into a human pandemic. Patients with severe 

infection suffer from acute respiratory distress, resulting in 

multiple organ failures and fatality.  

Coronaviruses are enveloped positive-stranded RNA viruses, 

and generally infect the epithelial cells in the respiratory and 

gastrointestinal tract. COVID-19 is a highly contagious 

disease indicating the need for widespread vaccination.  In the 

absence of any effective drug with an unknown 

epidemiological life cycle, mathematical models are crucial 

for studying various pathophysiological processes and 

immunological responses of real-world problems. By using 

mathematical models for these processes, information on drug 

efficacy can be obtained [2], [3].  

In this context, we plan to build a computational framework 

for visualizing SARS-CoV-2  infection dynamics in presence 

of immune response and analyzing the effect of drug efficacy 

on virus clearance (Figure 1). To achieve this, an ODE model 
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system was developed which was validated from the 

experimental data collected on  growth of SARS-CoV-2 from 

throat swab samples [4]. Additionally, the model includes the 

response of adaptive and innate immune system, which was 

validated using bronchoalveolar lavage fluid (BALF) sample 

obtained from patients with moderate and severe COVID-19 

infections [5]. 

The existing mathematical models for viral infection are 

mostly target-cell limited models that have been developed to 

understand the mechanism of viral infection inside the host 

cells [2], [3], [6]. These model variables generally include: 

uninfected target cells, which in the case of SARS-CoV-2 

infection is the lung epithelial cells, infected target cells, 

which are capable of producing virus particles and the virus 

particle itself. None of the previous models incorporate the 

dynamics of T cells and macrophages in regulation of the 

infection progression. 

In order to identify the contribution of T cells and 

Macrophages, firstly, we formulate and compare two models 

where model 1 (EIVT mode) considers  E, representing 

uninfected epithelial cells, I representing infected epithelial 

cells, V representing virus and T representing  T cells. 

Whereas model 2 (EIVTM model) consists of a fifth entitiy 

M, representing the macrophages along with the variables 

considered in EIVT model. Secondly, parameter estimation 

was performed using sequential quadratic programming 
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Figure 1. Graphical abstract of the workflow. The interaction between different 

model variables and the description of the data used for the model is shown. 
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algorithm using real patient data. Finally, the model 

framework was used to test the impact of drugs having 

mechanisms targeting infection rate, viral production and 

viral clearance. The infection mitigation by addition of drug 

at different time post-infection was investigated. The major 

novelty of the current work is the development of a 

computational framework incorporating viral infection 

progression and role of immune response in Covid-19 with an 

aim of testing the effect of drugs having various mechanisms 

and efficiencies on infection mitigation. 

 

II. MATERIALS AND METHODS 

A. Mathematical models 

In this work, we construct a set of mathematical models to 
understand the dynamics of SARS-CoV-2 infection by 
introducing the effect of innate and adaptive immune system 
in response to SARS-CoV-2 infection, in the target cell limited 
model. First, we combined the target cell limited model [6] 
along with the minimalistic model for virus and T cell [3] 
interaction to obtain a model structure. The structure 
considering only adaptive immune response consists of four 
variables: uninfected epithelial cells (EpithelialU), infected 
epithelial cells (EpithelialI), virus and T cells (Tcell), dynamics 
for which is shown below (EIVT model): 

𝑑[𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝑢]

𝑑𝑡
=  −β[𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝑈][𝑉𝑖𝑟𝑢𝑠]           (1) 

𝑑[𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝐼]

𝑑𝑡
= 𝛽[𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝑈][𝑉𝑖𝑟𝑢𝑠] − 𝛿[𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝐼] (2) 

𝑑[𝑉𝑖𝑟𝑢𝑠]

𝑑𝑡
= 𝑝 [𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝐼] [1 −

𝑉𝑖𝑟𝑢𝑠

𝐾
] − 𝑐𝑇 [𝑉𝑖𝑟𝑢𝑠][𝑇𝑐𝑒𝑙𝑙] −

𝑐 [𝑉𝑖𝑟𝑢𝑠]                                          (3) 

𝑑[𝑇𝑐𝑒𝑙𝑙]

𝑑𝑡
= 𝑠𝑇 + 𝑟[𝑇𝑐𝑒𝑙𝑙] 

(𝑉𝑖𝑟𝑢𝑠)𝑚

𝑘𝑇
𝑚+(𝑉𝑖𝑟𝑢𝑠)𝑚 − µ𝑇[𝑇𝑐𝑒𝑙𝑙]          (4) 

Here, the rate of virus infection into the uninfected 
epithelial is represented by β. The rate at which the uninfected 
cells get infected represents the rate of formation of infected 
cells. The infected cells are eliminated with a rate δ. The virus 
growth is represented using a logistic growth function, where 
p represents the rate of virus production from the infected cells 
and K is the maximum carrying capacity of the virus or the 
maximum viral load specific for any individual. cT represents 
the virus clearance rate due to presence of T cells. The natural 
death of the virus is modelled using a log linear function while 
the T cell is modelled as in Esteban et al. [3].  

Secondly, to identify the role of innate immune system on 
the virus dynamics, a new ODE for the macrophage has been 
introduced to the previous set (EIVTM model) as: 

𝑑[𝑀𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒]

𝑑𝑡
= 𝑠𝑀 +

𝑘𝑀1[𝑇𝑐𝑒𝑙𝑙]

𝑘𝑀2+𝑇𝑐𝑒𝑙𝑙
− µ𝑀[𝑀𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒]         (5) 

Here, macrophage homoeostasis is modelled as sM and 
activation rate of macrophages is represented as a function of 
T cells. It is because the cytokines released by T cell stimulate 
the macrophages [7] which in turn engulf the virus particle. 
Due to the presence of macrophages, the virus dynamics then 
changes to: 

𝑑[𝑉𝑖𝑟𝑢𝑠]

𝑑𝑡
= 𝑝 [𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙𝐼] [1 −

𝑉𝑖𝑟𝑢𝑠

𝐾
] −

[𝑉𝑖𝑟𝑢𝑠](𝑐𝑇[𝑇𝑐𝑒𝑙𝑙] + 𝑐𝑀[𝑀𝑎𝑐𝑟𝑜𝑝ℎ𝑎𝑔𝑒]) − 𝑐[𝑉𝑖𝑟𝑢𝑠]  (6) 

Here, an additional term has been added to represent the 
virus clearance rate (cM) due to presence of Macrophages. The 
model was further tuned to obtain the severe and moderate 
virus infection cases by varying the parameters corresponding 
to virus infection (β), death rate of infected cells (δ), maximum 
carrying capacity of virus (K) and kill rate due to T cells (cT). 

The parameters were selected based on a parameter 
estimation strategy to match the viral kinetics in the Covid-19 
patients reported in Wolfel et al. [4]. The clinical data 
presented in Wolfel et al. [4] was used for the model 
validation. The data consists of  the time course of viral load 
collected from nine patients from a single hospital in Munich, 
Germany (Jan 2020). The viral load data is reported in 
copies/ml per whole swab. To further validate the model, 
BALF sample data reported in Liao et al. [5], was used. BALF 
is a useful medical procedure used for diagnosing the lung 
pathologies. The data on immune cells  was obtained from 
BALF of moderate and severe Covid-19 patients  from  
Shenzhen Third people Hospital in China (Jan –Feb 2020).  

B. Parameter Estimation 

A set of coupled ordinary differential equations initial 
value problems (ODE-IVPs) was solved using fourth-order 
Runge-Kutta scheme using MATLAB ODE solver ODE45. 
Mininmization of the root mean square error (RMSE) between 
the experimental and simulated data was performed for 
estimating kinetic parameters using the sequential quadratic 
programming algorithm in the MATLAB optimizer fmincon. 
To achieve this, a non-linear programming (NLP) problem 
with the RMSE function as the objective function (as 
described in Eq. 7), where N is the number of sample points 
(clinical data) available, Expi and Simi signify the ith 
experimental and simulated data point obtained from the 
model, respectively. The rate constants were set as the decision 
variables. The parameter set giving the lowest RMSE was 
finally chosen.  

RMSE =  √
1

𝑁
∑ (𝐸𝑥𝑝𝑖 − 𝑆𝑖𝑚𝑖)

2N
i=1                                 (7)  

C. Parametric Sensitivity analysis and Simulation of 

antiviral drug efficacy 

In order to assess the parameters which significantly affect 
the progression of viral infection in case of SARS-CoV-2 
infection, a parametric sensitivity analysis was performed. 
Figure 2 shows the percent variation in viral dynamics 
obtained when parameters were varied in + 20% range of their 
base values one at a time.  

The analysis shows that viral growth is highly sensitive to 
the parameters representing infection rate and production rate 
in the initial growth phase. Also, viral growth is highly 
sensitive to the clearance/death rate in the later time points. 
These three parameters were then chosen as antiviral drug 
targets. To study the effect of antiviral drug the model was 
extended by multiplying the potential drug target parameters 
(β, p and c) one at a time with a factor (1-ε) where 0<ε<1, 
which determined the drug efficiency (a value of 1 implies 
100% drug efficacy). The simulations were performed for 
varying drug efficacy (ε) and also the time of drug 
introduction. A ratio of time-averaged virus concentration was 
calculated as follows:  
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𝜆 =
〈𝑉(𝑡)𝑇𝜀>0〉

〈𝑉(𝑡)𝑇𝜀=0〉
                                                                  (8) 

Where, the time averaged viral load is given by:   

 〈𝑉(𝑡)𝑇〉 =
1

𝛥𝑡
∫ 𝑑𝑡𝑉(𝑡)

𝑇+𝛥𝑡

𝑡
 

In Eq. 8,  numerator is the  time averaged viral load with 
drug administration (ε > 0), and the denominator is the time 
averaged viral load  without drug administration  (ε = 0), till 
10 th  day from the starting of drug. 

T refers to the time (in days) post infection, when drug is 
administered (T < t < T+Δt), where Δt =10. 

III.  RESULTS 

 Two models (EIVT and EIVTM) were compared with 
respect to the virus growth profile. Figure 3a shows the time 
profiles of uninfected cells, infected cells and virus when only 
adaptive (T cell) immunity is considered (EIVT model) and 
Figure 3b shows the similar time profile when both adaptive 
(T cell) and innate (Macrophages) immunity is considered 
(EIVTM model). To study the effect of presence of 
Macrophages all other parameters with respect to other 
variables have been kept same in both the cases. The results 
show that the severity of viral infection decreases when both 
immune system act in clearing the viral infection.  

The  comparison between the experimental and simulated  
data from the two models are presented in Figure 4. Since there 
is a variability in responses within the patients, we performed 
parameter estimation for multiple patients. For two 
representive patients’ data, we found that RMSE obtained for 
patient A (Figure 4a) from EIVT model  was four times higher 
than that obtained from EIVTM model. Whereas, RMSE 
obtained for patient B (Figure 4b) from EIVT model  was two 
times higher than that obtained from EIVTM model. Thus, in 
both the cases EIVTM model provided a better fit as compared 
to EIVT model. 

Next we validated our model using the patient data on ratio 
of macrophage to T cell obtained from the BALF sample 
analysis corresponding to healthy case, mild infection case and 
severe infection case [5]. Figure 5 shows the comparison of the 
ratio of Macrophage to T cell from experiment and simulation. 
The result shows that the model is capable of emulating the 
experimental data for mild and severe cases, where healthy 
case is considered as model initial condition.  

In order to show a proof of concept that the model can be 
used for assessment of drug efficacy in clearing the viral 
infection, the model simulations were performed by varying 
drug efficiency and time of drug administration (Figure 6).  
Figures 6a, 6b and 6c show viral growth profiles obtained by 
varying drug efficiency starting from 0 to 100% for the 
parameters β, p and c. The results show that a complete virus  
removal can be achieved if a 100% effective drug for blocking 
either infection rate or virus  production rate is administered.  

 
Figure 3. Time course of uninfected epithelial cells, infected epithelial cells 

and virus when (a) only T cell dynamics is incorporated (EIVT model) (b) both 

T cell and macrophage dynamics is incorporated (EIVTM model). 

  
Figure 5. Comparison of ratio of Macrophage to T cell as obtained 

from the BALF sample analysis of healthy, mild and severe patients 
with the ratio of Macrophage to T cell obtained from the EIVTM 

model at peak virus infection. 

  

Figure 4. Comparison of time course of virus profile for clinical and simulated 

data obtained from EIVT  and EIVTM  model for (a) Patient A data and (b) 

Patient B data . 

 

 
Figure 2. Parametric sensitivity analysis showing percentage variation in 

virus count with respect to time for (a) +20% variation in parameters (b) -

20% variation in parameters 
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Specifically, this model was used for testing the  effect of 
drug administration time post infection. Figures 6d, 6e and 6f 
show three cases: drug administration from 4th, 8th and 12th day 
post infection, respectively with varying drug efficiency for 
the parameters β, p and c. The result shows that even if  virus 
clearance is obtained using a 100% effective drug (drug 3), 
administered from 4 days after infection, only upto 60% virus  
removal can be achieved (Figure 6f). In contrast, 100% 
infection removal can be achieved by administering drugs 
targeting the infection rate (drug1) or virus production rate 
(drug 2) in the early infection phase (Figure 6d and 6e). If 
administered at the very late phase (12th day), it is possible to 
achieve upto 80% virus removal, if the drug is targeting the 
infection rate. However, drugs targeting production rate and 
virus clearance rate could not clear the  infection by more than 
20% if introduced in the later infection phase. Hence, the 
results show that an early administration of antivirals is crucial 
for viral clearance [8].  

IV. DISCUSSION 

Herein, we propose a mathematical model to study the 
dynamics of viral infection and effect of drug administration 
in novel SARS-CoV-2 in the presence of adaptive and innate 
immune cells. The model was tested and parameter estimation 
was performed for two real patient’s data [4]. The study shows 
that viral growth decreases when both T cells and 
Macrophages act together to counter the infection rather than 
only T cells. The results also show that drug targeting the 
infection rate parameter is most effective in blocking the viral 
infection. The other limitation of proposed framework is that 
it could not capture the fluctuation in viral count of the patients 
which could be due to varying levels of cytokines. In this 
context, we plan to extend this model to account for the effects 
of interleukins and further validate it with other clinical data 
collected from different patients. We also plan to upgrade the 
model so that various drugs including dexamethasone, 

tocilizumab, irbesartan that are under clinical trial can be 
tested using the proposed framework. Specifically, depending 
on the patient to patient variability in existing infection levels, 
the time required for viral eradication can be estimated. 
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Figure 6. Time course of virus particle count achieved by varying drug efficiency from 0 to 100% when drug targets (a) Drug1: infection rate (β), (b) Drug2: 

virus production rate (p), and (c) Drug3: virus clearance rate (c) , along with the analysis showing the effect of antiviral drug administration for the three drugs 

with varying efficiency at three time points (a) 4th  day post infection, (b) 8th  day post infection and (c) 12th  day post infection. Here, colorbar represents the 

ratio (λ) of time-averaged virus concentration obtained with and without drug administration  (Equation 7). λ=1 implies that there is no difference between the 

model with and without drug administration, while λ= 0 implies viral eradication due to a successful drug treatment. 
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