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Abstract— We discuss the practical employment of a machine
learning (ML) technique within AI for a social good application.
We present an application for elderly adult dementia onset
prognostication. First, the paper explains our encouraging
preliminary study results of EEG responses analysis using
a signal complexity measure of multiscale entropy (MSE) in
reminiscent interior working memory evaluation tasks. Then,
we compare shallow and deep learning machine learning
models for a digital biomarker of dementia onset detection.
The evaluated machine-learning models succeed in the most
reliable median accuracies above 80% using random forest
and fully connected neural network classifiers in automatic
discrimination of normal cognition versus a mild cognitive
impairment (MCI) task. The classifier input features consist
of MSE patterns only derived from four dry EEG electrodes.
Fifteen elderly subjects voluntarily participate in the reported
study focusing on EEG-based objective dementia biomarker
advancement. The results showcase the essential social advan-
tages of artificial intelligence (AI) application for the dementia
prognosis and advance ML for the subsequent use for simple
objective EEG-based examination.

Clinical relevance— This manuscript introduces an objective
biomarker from EEG recorded by a wearable for a plausible
replacement of a mild cognitive impairment (MCI) evaluation
using usual biased paper and pencil examinations.

I. INTRODUCTION

A rise in dementia cases globally results in significant
cost inflation in healthcare. Nearly 50 million older adults
suffer from dementia-related neurocognitive maladies, as
detailed by the World Health Organization (WHO) [1],
and this number expects to triple through the subsequent
three decades [2]. This increasing difficulty calls for a
feasible utilization of AI to advance early diagnostics for
subsequent cognitive well-being monitoring and preservation
with so-called “digital pharma” or “beyond a pill” non-
pharmacological-therapeutical (NPT) strategies [3]. An ulti-
mate dementia determination is only possible by postmortem
autopsy. A differential examination with other types of
age-related brain neurodegeneration is usually ventured. A
cognitive standing examination, such as the Montreal Cog-
nitive Assessment (MoCA) [4], [5], is ordinarily utilized to
quantify the severity of dementia. Objective medical imaging
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methods, such as functional magnetic resonance imaging
(fMRI) [6] or EEG [7], [8], [9] together with behavioral
measures [10], [11], are recently in ongoing expansion to
provide an early onset of a mild cognitive impairment (MCI)
prediction and subsequent monitoring. In this study, we
test a hypothesis that reminiscent (childhood age) versus
modern/contemporary interiors within a working memory
paradigm, inside Western and Japanese designs, are helpful
for a new EEG-based dementia biomarker application. We
explicitly decide to test a wearable EEG in the current
project to develop a home-based biomarker shortly. We select
to use a popular wearable MUSE EEG system (InterAxon
Inc., Toronto, Canada) that allows for a quick collection of
EEG and behavioral data. The MUSE headband provides
an acceptable and quantifiable event-related-potential (ERP)
and broadband EEG collection as shown in [12], [13]. Dry-
electrode-based EEG systems result in more noisy EEG sig-
nals comparing to clinical-grade systems. To deal with noisy
time-series, we propose to utilize a signal complexity in the
form of multiscale entropy (MSE), which is more robust
to noise comparing to traditional time-domain features [14],
[15], [12].

II. METHODS

We carry brainwave data recording experiments with older
adults in the RIKEN Center for Advanced Intelligence
Project (AIP). The study adheres to human subject exper-
imental involvement guidelines and ethical review from the
RIKEN Ethical Committee for Experiments with Human
Subjects and The Declaration of Helsinki. In the study, 15
seniors (11 females; mean age of 74.3 years old; ±6.4 years’
standard deviation of age; recruited from Silver Human Re-
sources Center and Honobono Laboratory, Japan, 10 subjects
with MCI evaluation based on MoCA≤ 25) took part. All
participants received monetary gratification for their partici-
pation in the study, and they gave informed written consent.
All participants accepted financial gratification for their co-
operation in the study, and they provided informed written
consent. We use for EEG data collection a four-channel
portable MUSE 2016 headband by InteraXon Inc., Canada.
It has been shown already that the MUSE device allows
for a reliable EEG capture from preset AF7,AF8,T P9, and
T P10 electrode locations using dry electrodes and careful
setting conditions [12]. The ground reference electrodes are
set at the forehead. We prepare our in-house EEG capture
environment in Python using muse-lsl [13] library, which
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Cultural and age preference distributions of the reminiscent interior pictures with Bonferroni-
corrected Wilcoxon rank-sum test results for median difference pairwise significances: 
pr(NW vs OE) ≤ 0.003; pr(NW vs OJ) ≤ 0.000 ; pr(NW vs NJ) ≤ 0.914;
pr(NJ vs OW) ≤ 0.002; pr(NJ vs OJ) ≤ 0.000; pr(OJ vs OW) ≤ 0.000
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Fig. 1. Subject preference scores for the four groups in reminis-
cent (childhood age) versus modern/recent interiors within Western and
Japanese designs. NW denotes the picture types for new Western, OW
for old/reminiscent Western, NJ for contemporary Japanese, and OJ
for old/reminiscent Japanese. The response distributions from all 15
participating subjects clearly show significantly lower preferences with
pr(N ∗ vs O∗) ≤ 0.05/4 = 0.0125 as tested with Bonferroni-corrected
Wilcoxon rank-sums tests, where [∗] stands for J or W , for the modern
(NJ or NW ) designs (blue and green distributions versus red and orange).
At the same time, the reminiscent Japanese interiors (orange) were the more
favorable. The reminiscent Western interiors (red) resulted in intermediate
preference results with also statistically significant differences to the other
groups.

communicates with MAX [16] visual programming environ-
ment for stimulus presentation and reminiscent preference
responses recording. We disinfect each time the MUSE
headband with alcohol wipes and place it on a subject’s head
with a careful checks for EEG average amplitudes not to
exceed thresholds indicating EMG contamination. We use
50Hz notch filter to remove power line interference, and
we further bandpass the signal in a range of 1 ∼ 30Hz to
minimize out of band noise. Each elderly participant, after
the experimental procedure and purpose explanations, signs
an informed consent. There are eight types of interior pic-
tures in each EEG recording session in Japanese and Western
styles within old (post World War II) and modern (recent
designs), creating categories with two examples from each.
The pictures we present in an oddball-style paradigm. Before
each random order presentation of eight interiors, we request
the participant to memorize and focus on one of them and
ignore the remaining seven. Altogether, each subject receives
64 visual stimulations. After the EEG session, we conduct
a quick preference evaluation behavioral experiment using a
touchpad slider. We ask the participants to evaluate a subjec-
tive reminiscence of each image on a linear scale from −5 to
+5. We discuss the results of both experimental modalities
in subsequent sections. We segment EEG into three-second
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Fig. 2. Subject preference distributions depicted for all MoCA scores
available in the project. Higher MoCA scoring subjects resulted in unimodal
while the lower scoring participants in bimodal distributions.

long intervals, starting each stimulus onset time, in which the
participants observed presented reminiscent interior images,
with MNE version 0.23.0 package in Python [17]. Multiscale
Entropy (MSE) is a tool allowing for quantification of a
signal complexity at varying time scales [14]. MSE involves
successive computations of a sample entropy [18] estimated
on coarse-grained sequences representing system dynamics
on different time scales [14]. Principally the MSE calculation
consists of a coarse-graining or downsampling of the ana-
lyzed time-series – essentially looking at increasingly coarser
time resolutions. In our project, we analyzed four-electrode
EEG separately over the signal segmented into three-second
long post-stimulus intervals using neurokit2 library [19].
The resulting MSE features are summed sample entropy
values over all analyzed scales within the analysis window of
three seconds [15]. We test classifiers available in the scikit-
learn library version 0.24.1 [20] for binary classification
of MCI versus normal cognition of the 15 participants in
our reminiscent interior image working memory study using
input MSE values from four EEG channels only as feature
vectors. We use a ten-fold cross-validation procedure due to
a limited number of available subjects, with a chance level
of 66% due to a more significant number of MCI versus
normal subjects available in our study. We test the following
classification methods with input feature standard scaling
using a removal a mean and division by a variance as follows:
a logistic regression (LR) w; with subsequent liblinear
solver; a maximum iteration count set to 1000; a linear
discriminant analysis (LDA) with a least-squares solver and
no shrinkage; a support vector machine with the linear
kernel (linearSVM), with a loss function set to a squared
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hinge and l2−penalty linear kernel; support vector machine
with a radial basis function (rbfSVM) using a kernel
coefficient gamma equal to 1/4 (rendering an inverse of
feature-length); support vector machine with a polynomial
kernel (polySVM): with a second-degree polynomial kernel
employing a coefficient gamma set to further to 1/4 and an
independent term in kernel function coe f 0 = 1.0. support
vector machine with a sigmoid kernel (sigmoidSVM) with
a kernel coefficient gamma set also to 1/4; a random forest
classifier (RFC) adopting a number of trees in the forest
equal to 200, a split criterion by mean squared error used,
without a maximum tree depth limitation, and a number 2
set as a minimum number of samples required for a split;
a fully connected deep neural network (FNN) applying
densely connected layers with rectified linear units (ReLU),
with architecture using a four-unit input and four hidden
layers with 256,128,32, and 16 units, respectively, a two-unit
softmax output layer; and a training epoch count set to 5000,
ADAM optimizer employing a learning rate equal to 0.001,
a log-loss function. For every above-tested machine learning
method, 10% of training data was applied for validation in
a ten-fold cross-validation run, respectively.

III. RESULTS

Results of the behavioral (touchpad preference responses)
experiment we summarized in Figure 1 for reminiscent
(childhood age) versus modern/contemporary interiors within
Western and Japanese designs. The response distributions
from all 15 participating elderly persons have shown signifi-
cantly lower preferences (pr(N ∗ vs O∗)≤ 0.05/4 = 0.0125
as tested with Bonferroni-corrected Wilcoxon rank-sums
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Fig. 3. The subject interior evaluation preference scores from Figure 2
grouped into normal and MCI (MoCA≤ 25) levels. The MCI subjects results
further confirmed the observation of a bimodal distribution with pk = 0.0575
as obtained from Kolmogorov-Smirnov test for distribution comparisons.
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Fig. 4. Classification results of normal versus MCI subjects using EEG-
derived MSE features from four EEG electrodes. A chance level in the
experiment was of 66.7%. The best results were obtained for all oddball
experiment response groups (attended, inhibited, or all together) for the fully
connected neural network (FNN) and random forest (RFC) classifiers.

tests) for the the modern Japanese (NJ) and Western (NW )
designs. Furthermore, the experiment resulted in reminiscent
Japanese interiors to be more favorable. The reminiscent
Western interiors resulted in between preference results with
also statistically significant differences to the other groups
(see details in Figure 1). We also analyzed the subject
preference distributions grouped for all available scores in the
project. Higher MoCA scoring subjects resulted in unimodal
while the lower scoring participants in bimodal distributions
as shown in Figure 2. Finally, the subject interior evaluation
preference scores from Figure 2 we also grouped according
to normal (MoCA> 25) and MCI (MoCA≤ 25) scores. The
result confirmed a previous observation of the MCI subjects’
bimodal distributions with pk = 0.0575 as obtained from the
Kolmogorov-Smirnov test for distribution comparisons.

Results of EEG binary classification of normal (MoCA>
25) versus MCI (MoCA≤ 25) we summarized from bar-plots
with error bars depicting 95% confidence intervals of classi-
fication results using the evaluated classifiers and three types
of analyzed response groups as shown in Figure 4. The RFC
and FNN classifiers resulted in the best median accuracies.
All three groups attended (oddball targets), ignored (oddball
non-targets), and all together EEG response classification
were above 80% (a chance level was of 66% for our subject
group) for the FNN classifier.

IV. CONCLUSIONS

The described project delivered two notable outcomes
addressing behavioral and brain response distributions in
a reminiscent interior evaluation task. We showed elderly
subject preferences favoring reminiscent interior designs
with childhood-age and own culture (here Japanese) envi-
ronments, which confirmed our hypothesis of this kind of
imagery usefulness for dementia biomarker task design. We
also observed unimodal response distributions for normal
versus bimodal (more extreme) for the MCI group based
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on MoCA evaluations. Furthermore, the binary classification
framework of MCI (MoCA ⩽ 25) versus normal cognition
(MoCA > 25) in a working oddball memory task using
reminiscent interior images produced remarkable accuracies
using MSE features derived from four EEG channels (median
classification accuracies above 80% for the best methods
using RFC and FNN) as outlined in Figure 4.

The AI/ML-based dementia onset forecasting successful
adoption shall lead to healthcare cost-saving, benefiting aging
societies globally. We additionally recognize the inherent
limitations of the presented method. However, at this point,
we reproduce human-error-prone and subjective cognitive
evaluation measures, which are proxy prognostications of
dementia origin. Furthermore, the current project involved
a small sample of subjects, which is an additional limitation
of the reported classification results.
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T. Holland, A. Lampit, K. Laver, A. Lutz, N. T. Lautenschlager, S. M.
McCurry, F. J. Meiland, M. C. Morris, K. D. Mueller, R. Peters,
G. Ridel, A. Spector, J. T. van der Steen, J. Tamplin, Z. Thompson,
and A. Bahar-Fuchs, “Toward a theory-based specification of non-
pharmacological treatments in aging and dementia: Focused reviews
and methodological recommendations,” Alzheimer’s Dement., no. May,
pp. 1–16, 2020.

[4] P. Julayanont, Z. Nasreddine, M. Brousseau, M. Borrie, H. Chertkow,
and N. Phillips, “The Montreal cognitive assessment memory index
score (MOCA-MIS) and total MOCA score to help predict mci
conversion to Alzheimer’s disease,” Alzheimer’s & Dementia: The
Journal of the Alzheimer’s Association, vol. 8, no. 4, p. P372, 2012.

[5] M. Nara, M. Sugie, T. Takahashi, T. Koyama, R. Sengoku, Y. Fujiwara,
O. Shuichi, K. Harada, S. Kyo, and H. Ito, “Japanese version of the
montreal cognitive assessment cut-off score to clarify improvement
of mild cognitive impairment after exercise training in community-
dwelling older adults: Moca-j score to clarify mci improvement,”
Geriatrics & Gerontology International, vol. 18, 02 2018.

[6] H. Sugimoto, T. Kawagoe, and M. Otake-Matsuura, “Characteristics
of resting-state functional connectivity in older adults after the picmor
intervention program: a preliminary report,” BMC geriatrics, vol. 20,
no. 1, pp. 1–10, 2020.

[7] T. M. Rutkowski, Q. Zhao, M. S. Abe, and M. Otake, “AI neu-
rotechnology for aging societies - task-load and dementia EEG digital
biomarker development using information geometry machine learning
methods,” in AI for Social Good Workshop at the Neural Information
Processing Systems (NeurIPS) 2018, (Montreal, Canada), pp. 1–4,
December 8, 2018.

[8] T. M. Rutkowski, Q. Zhao, M. S. Abe, and M. Otake-Matsuura, “Pas-
sive BCI for task-load and dementia biomarker elucidation,” in 41st
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), (Berlin, Germany), p. ThC01.1, IEEE
Engineering in Medicine and Biology Society, IEEE Press, July 23–27,
2019.

[9] T. M. Rutkowski, M. Koculak, M. S. Abe, and M. Otake-Matsuura,
“Brain correlates of task–load and dementia elucidation with tensor
machine learning using oddball BCI paradigm,” in ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8578–8582, May 2019.

[10] T. M. Rutkowski, M. S. Abe, M. Koculak, and M. Otake-Matsuura,
“Cognitive assessment estimation from behavioral responses in emo-
tional faces evaluation task - ai regression approach for dementia onset
prediction in aging societies -,” in NeurIPS Joint Workshop on AI for
Social Good, vol. Track 1 - Producing Good Outcomes, (Vancouver,
Canada), pp. 1–4, December 14, 2019.

[11] T. M. Rutkowski, M. S. Abe, M. Koculak, and M. Otake-Matsuura,
“Classifying mild cognitive impairment from behavioral responses
in emotional arousal and valence evaluation task - ai approach for
early dementia biomarker in aging societies -,” in The 42nd Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), (Montreal, Canada), pp. 5537–5543, IEEE
Engineering in Medicine and Biology Society, IEEE Press, July 20–24,
2020.

[12] O. E. Krigolson, C. C. Williams, A. Norton, C. D. Hassall, and F. L.
Colino, “Choosing muse: Validation of a low-cost, portable eeg system
for erp research,” Frontiers in Neuroscience, vol. 11, p. 109, 2017.

[13] A. Barachant, D. Morrison, H. Banville, J. Kowaleski, U. Shaked,
S. Chevallier, and J. J. T. Tresols, “muse-lsl.” ZENODO, May 2019.

[14] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy
analysis of biological signals,” Physical review E, vol. 71, no. 2,
p. 021906, 2005.

[15] J. Escudero, D. Abásolo, R. Hornero, P. Espino, and M. López,
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