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Abstract— The morphological prior information incorpo-
rated with the discrete cosine transformation (DCT) based
electrical impedance tomography (EIT) algorithm can improve
the interpretability of the EIT results in clinical settings.
However, an outdated prior information can yield a misleading
result compromising the accuracy of the clinical decisions.
Detection of the outdated prior information is critical in the
DCT-based EIT algorithm. In this contribution, a redistribution
index calculated from the DCT approach result was proposed to
quantify the possible error induced by the morphological prior
information. Two simulations in terms of different atelectasis
and collapse scales were conducted to evaluate the plausibility
of the redistribution index. Thus, an experiential threshold for
redistribution index was adopt as an indicator to the outdated
prior in DCT-based EIT approach. A retrospective research
was conducted with the seven-day patient monitor data as a
proof-of-concept to verify plausibility and comparability of the
redistribution index. From the evaluation, the redistribution
index qualifies the function as an indicator for the outdated
prior in the DCT-based EIT approach.

Clinical relevance— This establishes an indicator to advice
an update to the morphological prior information embedded in
EIT approach, which lower the risk misleading interpretation
of EIT results in mechanical ventilation monitoring.

I. INTRODUCTION

Electrical Impedance Tomography (EIT) is used to visualize
the regional lung ventilation and aeration distribution from cur-
rent induced voltage changes through the electrodes attached
on the surface of the chest[1]. This technology has been shown
practical in reducing ventilator induced lung injury (VILI) and
instructing clinicians to set appropriate positive end-expiratory
pressure (PEEP) levels for mechanically ventilated patients
in the intensive care unit (ICU)[2], [3]. However, low spatial
resolution, blurred anatomical alignment, and reconstruction
induced artefacts hinder the interpretation of the status of
patients in clinical settings. Introducing structural information
into EIT images will eventually be helpful for clinicians in
forming a more direct comprehensive insight[4].
Prior information can vary, but is usually based on pre-
vious empirical studies of the tissue conductivities or the
anatomical constraints or both. Assigning certain properties,
e.g. conductivities, to a predefined area might be the most
common approach to embed prior information in the EIT
reconstruction process. e.g., Glidewell et al. use the shape
of the lungs to group FEM elements and to assign different
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values[5]. Another principle to include the prior information
is introduced as a subset of basic functions constraint
method. The subset of the basic functions is of abundant
selections. Vauhkonen et al. chose a series of representative
ensemble of expectable conductivity distributions based on
the physiological information within the body[6].
Generally, these existed researches yield a universal prior
template for all the possible examined subjects. As for a
more personalized and more patient-specific prior, Schullcke
et al. proposed a novel EIT algorithm with the prior as a subset
of basic functions using the patient related morphological
images, e.g., CT images taken when the patients are admitted
to the hospital[7]. The generation of the constraining subsets
uses the discrete cosine transformation (DCT) of the related
morphological images.
Even though this algorithm has shown an attractive per-
sonalized result, it comes with the same problem as all
prior information always induces: results are just as good
as the validity of the prior assumptions. The DCT-based
methodology might not be always valid considering the fact
that the status of the patient is changing over time. The
outdated prior information might induce a risk in terms of
misleading interpretation of the results.
The objective of this contribution is to introduce an effective
approach to detect the outdated prior information applied to
the DCT-based EIT algorithm. A redistribution index was
proposed to quantify the difference between the constrained
and the unconstrained DCT results. Simulations in terms of
different scales of atelectasis and collapse were conducted for
evaluation purpose. Redistribution indexes were calculated
using the constrained and the unconstrained DCT results
of every simulated scales. Thus, a threshold value of the
redistribution index was initially yield to determine the
outdated prior information. At last, this criterion was tested
with a retrospective long-term patient monitoring dataset.

II. METHODS

A. DCT-based EIT reconstruction

The classical approach for reconstruction of conductivity
distribution x̂ in difference EIT is presented in 1 where vector
x = σ − σbaseline is the change in internal conductivity
distribution σ and y = v − vbaseline is a vector containing
the differences of measured voltage v.

x̂ = argmin
x

{
‖ F (x)− y ‖22 +λ2 ‖ Rx ‖jj

}
(1)

if only small conductivity changes are observed, the
forward model F (x) can be linearized around a reference
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conductivity σbaseline such that F (x) ≈ Jx, where Ji,j =
∂yi
∂xj

∣∣∣
σref

forms a Jacobian matrix J. An element Ji,j maps

small voltage changes at the position i of y to a conductivity
change of the element j within the discretized domain in a
FEM model. The R is a regularization which have several
options. In this contribution a Laplace prior RLP was used.
Equation 1 can be solved in a closed form with linearization:

x̂ = (JTJ+ λ2R)−1JTy = By (2)

where the matrix B functions as a reconstruction matrix
which calculates the impedance distribution variation from the
measured boundary voltages. One common method to include
prior information as grouped different tissue properties in the
setting of σbaseline on which J is depending[5].
The other method to include the constraining prior in-
formation is to introduce a series of basic functions
s1(p, q), s2(p, q), . . . , sM (p, q) to modify the Jacobian matrix
J. The reconstructed conductivity change x̂ in 2 is written:

x̂ = (JSTJS+ λ2R)−1JSTy = By (3)

where S ∈ RN×M represents the matrix of constraining
basic functions, N is the number of the elements in the FEM.
In this contribution, the basic function subset S is obtained
by element-wise mapping of FEM-elements to basis vectors
of a Discrete Cosine Transform (DCT) of the personalized
morphological image A.

Vp,q =

M−1∑
m=0

N−1∑
n=0

Am,n ·D(p, q)m,n (4)

where the cosine function combinations implemented in
the basic function subset are formed as D(p, q)m,n =

αpαq cos
(2m+ 1)pπ

2M
· cos (2n+ 1)qπ

2N
. p and q are the

frequencies of the cosine function at the x-axis and y-axis
respectively. In this contribution p and q are chosen as 15
frequencies at either axis as p, q ∈ (0, 1, . . . , 14).
The multiplication of D(p, q)m,n and an anatomical binary
lung image Pm,n yields matrix C(p, q)m,n = Pm,n ·
D(p, q)m,n. The columns of the basic function subset is
determined as si = T(C(p, q)) , where T is a mapping
function assigning each pixel of C(p, q) to the FEM elements
which covers the corresponding pixel.

B. Simulation data

The simulations were carried out with MATLAB R2019a
(Mathworks, Natick, MA, USA) using the EIDORS
toolbox[8]. In the simulation, initially the FEM-elements be-
long to lung area were assigned to a conductivity of σinitiallung =

0.5, the remaining elements were set to σinitialnon−lung = 1. With
this initial configuration, vinitial was generated.
The first simulation involved different scales of dorsal lung
area atelectasis from 0% to 50%. Ventilated lung tissue was
set assigned to a conductivity of σventilatedlung = 0.25,, while
the collapsed area was set to remain σatelectasislung = 0.5,. This
configuration yielded the vatelectasis for reconstruction. The

Fig. 1. The FEM models used for simulation. (a): Atelectasis model; (b):
Collapse model.

second simulation used the same values for conductivity con-
figuration, but involved different scales of left lung collapse
from 0% to 100%. This simulation yielded the vcollapse
for reconstruction. One example from each simulation was
depicted in Fig. 1.

In the reconstruction part, 25% of the Gaussian noise was
added to the vatelectasis and vcollapse. To prevent the ’inverse-
crime’, different meshes are used for simulation and image
reconstruction. During reconstruction, three different prior
information, namely lung contour (non-constrained prior),
accurate prior, 100% left lung collapse prior or 50% dorsal
atelectasis prior (fixed constrained prior), were employed
into the DCT approach. These two scopes of simulations
were used to evaluate a criterion to detect an outdated fixed
constrained prior information.

C. Redistribution index

A DCT-based basic function subset generated from a
morphological image can include more constraints on re-
construction in addition to the lung shape. For example, the
area shown as atelectasis in the CT witnessed little change
in EIT results. This constrain in subset S is specified by
the corresponding Hounsfield scale in the CT image which
derives the T(Cc(p, q)). If only a lung shape without details
is specified, the T(Cnc(p, q)) will allow the reconstruction
in the whole lung area. The redistribution index is proposed
to quantify the amount of the ‘leaking’ reconstruction from
a constrained area to a non-constrained area using the same
measurement data, or more theoretically, the redistribution
of the pixel value histogram. The redistribution index is
explained as:

RI =

∑
xy∈cons (x̂

nc
xy − x̂cxy)∑

xy∈x̂c
xy

x̂cxy
(5)

xy ∈ cons expresses the constrained area in the morpho-
logical constrained area, x̂c is the DCT approach result using
the constrained area prior, and x̂nc is the DCT approach
result without the constrained area prior. Equation 5 will
yield a value between 0 and 1. The flowchart to calculate the
redistribution index is depicted in Fig. 2.

D. Patient data

The retrospective patient data was recorded with Pulmo-
Vista500 (Draeger Medical, Luebeck, Germany). The study
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Fig. 2. The redistribution index calculation flowchart. The examples were
derived from a simulation of 25% atelectasis. The example constrained prior
is set as 50% atelectasis.

was approved by the Human Investigation Review Board
University of Szeged (approval number 67/2020-SZTE). The
trial was registered on ClinicalTrials.gov under NCT04360837.
Written informed consent was obtained from the patients or
their legal representatives, the methods were carried out in
accordance with the approved guidelines and regulations. The
patient was deep sedated, intubated and ventilated with a
positive end-expiration PEEP step maneuver performed. The
study period was seven days. The corresponding CT dataset
at the first day of the ICU admission showed the dorsal part
of the left lung as atelectasis.
DCT approach was implemented on the patient data, but with
different prior, to obtain the EIT results. The constrained
prior includes the atelectasis area and other anatomical
information from the patient CT taken on day 1 before the
EIT measurement. The non-constrained prior only specify
the lung contour from the same CT. Thus, the redistribution
index was calculated from EIT results at every PEEP step on
day 1, day 3 and day 7.

III. RESULTS

A. Simulations

Simulation reconstruction examples, namely 50% left lung
collapse and 25% dorsal atelectasis, were displayed in Fig. 3a.
The redistribution indexes were calculated and depicted in Fig.
3b. The DCT approach results, which used the prior of 100%
collapse or 50% atelectasis, only allowed the reconstruction
within the pre-defined area. Thus, these results cannot imply
the real simulation status. From the depicted redistribution
indexes of either simulation, redistribution index increased
as the atelectasis scale or collapse scale decreased. In other
words, when the difference between the real status and the
fixed constrained prior information became more notable, an
increase will be expected in the redistribution index. When
this prior-reality difference becomes unbearable, or more
specifically, will lead to a misleading result, the redistribution
index will reach to a threshold. At this time, for EIT evaluation
process there exists no consensus on the best criterion to
claim an EIT result mislead a realistic status. We note that
the control of the prior-reality difference within 30% will
yield a rather tolerate result. Thus, at this difference point
the redistribution index is around 0.4, which was used as a

Fig. 3. The exampled DCT approach results and corresponding redistribution
index from the two-scope simulations. (a) The exampled DCT results with
different priors employed. Upper: Examples from the simulation of 25%
of atelectasis; Lower: Examples from 25% of the left lung collapse. (b)
Redistribution indexes calculated from the two-scope simulations.

temporary threshold.

B. Patient data

The exampled images of conductivity distribution change
relating to the PEEP trial at PEEP 22 cmH2O of the subject
on day 1 and day 7 were depicted in Fig. 4a. The image of
the conductivity distribution change between different PEEP
scales is used determine the potential recruitment and the
possible overdistention. In both DCT approach reconstruction,
we can find a trend of decreasing potential recruitment (the
red and yellow area shown in Fig. 4a) from day 1 and
day 7, though with different priors. In addition, a possible
overdistention can be observed on day 1 (the dark blue area
shown on day 1 in Fig. 4a). The redistribution indexes of each
PEEP step on day 1, day 3 and day 7 were plot in Fig. 4b.
In general, the redistribution index is larger when the PEEP
level is higher. However, on day 1, when the PEEP rose from
22 to 25 cmH2O the redistribution index dropped from 0.39
to 0.32. On day 3 and day 7, the largest redistribution index
is smaller than the largest of day 1. On day 7, the distribution
indexes stayed rather stable in all PEEP levels.

IV. DISCUSSION

In this contribution, we proposed the redistribution index
with the aim to detect an outdated morphological prior
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Fig. 4. Exampled conductivity distribution difference images and cor-
responding redistribution indexes. (a) The difference image of ventilation
distribution at PEEP 22 cmH2O of the patient on day 1 and day 7. Upper
row: result from non-constrained prior; Lower row: result from fixed prior;
(b) Redistribution indexes calculated at different PEEP steps on day 1, day
3 and day 7.

information used in the novel DCT-based EIT algorithm.
A redistribution index threshold was hypothesized by two
scopes of simulations on collapse lung area and atelectasis
respectively. It was demonstrated that there is a straight
forward way to quantify the effect of an outdated constrained
prior on the result of the DCT approach. In Fig. 3b, an
increasing trend of redistribution index was obvious when the
difference between the fixed constrained prior and real status
became more notable. When the redistribution index reached
0.4, we can hypothesize the fixed constrained prior to be
outdated. It is recommended that the integrated priors in the
DCT-based EIT algorithm should be checked and updated
at this point, e.g. by available patient measurements or by
predicting potential changes based on pathophysiology or
both.
It is worth noting that the accurate prior employed DCT
approach results are expected to be accurate, but the redistri-
bution was still observed. This can be explained that the non-
constrained prior DCT approach allows the reconstruction
in the entire lung area, and the spatial resolution of EIT
result is low. In addition, the redistribution indexes for the
accurate prior results remained much lower than the threshold.
For the retrospective patient data, with the higher PEEP,
the larger redistribution index can be expected. The higher
PEEP could ‘recruit’ closed alveoli, which might improve
atelectasis regions to open and to ventilate in a relatively
normal fashion[9]. As the fixed prior was derived from a CT
before the PEEP trial, it can be different from the patient
status under a higher PEEP. The decrease of the redistribution
index on day 1 at PEEP 25 cmH2O might be explained by
the possible overdistention or ventilator induced lung injury
(VILI) due the high PEEP. The generally smaller redistribution
indexes on day 3 and day 7 compared with day 1, and the
rather stable trend on day 7, can both be explained by the
deteriorating patient condition and less recruitment in a PEEP
trial. It is worth noting that for the PEEP steps 10 and 13
cmH2O on day 3 and day 7, the redistribution index is larger
than that of day 1. This might suggest the physiopathological
status of the patient has changed.
One of the limitations of this research is that threshold

is hypothesized with a standard of a rather tolerate DCT
approach result by only two-scope simulations. It should
be evaluated with further researches. In simulations, the
conductivity distributions were based only on a simple
physiological assumption. While in clinical settings, the
patients are expected to suffer from several symptoms. It
should be more accurate to yield a threshold from clinical
data. Another limitation is on the patient data evaluation.
Unfortunately, we did not obtain the CT images from the
patient following the days of the hospital admission. So we
cannot compare the DCT approach results from an updated
prior to the current results.
Nevertheless, through both simulations and patient data
analysis, the redistribution index can suggest the potential
changing of the patient status. Thus, it could be used as
an indicator for the outdated prior in the DCT-based EIT
approach. Updating the prior information in the DCT approach
can facilitate the accurate interpretation of the EIT results.

V. CONCLUSIONS

The redistribution index was proposed and the related
preliminary evaluation were done in terms of simulations and
retrospective patient dataset. The evaluation result suggested
the potential of the redistribution index to detect an outdated
prior information in a DCT-based EIT algorithm. Considering
the calculation method of the redistribution index, it should
be able to extend this definition to other EIT algorithms using
the prior information.
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