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Abstract— Doxorubicin (DOXO) is a well-established 

chemotherapy drug for treatment of different tumors, ranging 

from breast cancer, melanoma to multiple myeloma (MM). 

Here, we present a coupled experimental/modeling approach to 

study DOXO pharmacokinetics in MM cells, investigate its 

distribution among the extracellular and intracellular 

compartments during time. Three model candidates are 

considered and identified. Model selection is performed based 

on its ability to describe the data both qualitatively and in 

terms of quantitative indexes. The most parsimonious model 

consists of a nonlinear structure with a saturation-threshold 

control of intracellular DOXO efflux by the DOXO bound to 

the cellular DNA. This structure could explain the hypothesis 

that MM cells are drug-resistant, likely due to the involvement 

of P-glycoproteins. 

The proposed model is able to predict the intracellular (free 

and bound) DOXO and suggests the presence of a saturation-

threshold drug-resistant mechanism. 

 
Clinical Relevance— The model can be used to properly 

understand and guide further experimental setup, e.g., to 

investigate multiple myeloma cell variability among different 

cell lines. 

 

I. INTRODUCTION 

Multiple myeloma (MM) is a hematological neoplasm 
characterized by abnormal proliferation of plasma cell clones 
and a tropism for the bone marrow [1], [2]. It represents the 
third most common blood cancer leading to an abnormal 
production of paraprotein, organ damage, lytic bone lesions, 
immunodeficiency. MM showed a global incidence of more 
than 80,000 cases diagnosed in 2017 and it is expected to 
increase to over 100,000 by 2027. Currently, the survival rate 
at 5 years is around the 50% [3]. Despite the increase in 
survival rate in the last decades, MM remains a treatable but 
not curable neoplastic disorder. Therefore, patients eligible 
for autologous transplantation of hematopoietic stem cells are 
often treated with chemotherapy courses, usually under a 
multidrug regimen to increase and synergize the therapeutic 
efficiency [4].  

Among chemotherapeutic drugs used in MM treatment, 
the doxorubicin (DOXO) induces cell death mainly through 

 
This work has been supported by Department of Information 

Engineering, University of Padova, under the project SID 2020. No other 

potential conflict relevant to this article was reported. 

A. Giaretta, M.G. Pedersen, R. Visentin are with the Department of 

Information Engineering, University of Padova. M.G. Pedersen is also with 

the Department of Mathematics “Tullio Levi-Civita”, University of Padova. 

F. Da Ros, M. Mazzucato are with the Aviano National Cancer Institute. 

Corresponding author: R. Visentin, Department of Information 

Engineering, University of Padova, via G. Gradenigo 6/B, 35131 Padova, 

Italy (email: visentin@dei.unipd.it). 

the inhibition of topoisomerase II [5]. Its employment is well-
established and has revealed promising responses in MM 
treatment [6], [7], [8]. However, cells and tissues can exercise 
a drug-resistant response that could affect the drug 
pharmacokinetics (PK). Indeed, DOXO is actively released 
out of the cell membrane and so loses its efficacy due to the 
cells expressing the multidrug resistant pump P-glycoprotein 
(Pgp) [9], [10]. A better understanding of the cell response to 
the drug is of pivotal importance to properly optimize dosage 
regimen of current therapeutic protocols. Nowadays, merging 
mathematical modeling with biological experiments 
represents an optimal way to achieve such goals, as already 
done for breast cancer cells treated with DOXO [5]. Indeed, 
mathematical models can help driving the biological 
discovery by properly focusing on specific and controlled 
experiments, as well as being used as simulation tools to 
predict behaviors under unexplored conditions and 
optimize/propose novel therapeutic protocols to be tested. 

Here we aim at developing a mathematical model of 
DOXO PK in MM cells. We will propose a suitable model 
structure among three possible candidates, and we will 
experimentally and mathematically discuss how DOXO may 
be subject to an important drug-resistance mechanism in MM 
cells.  

II. METHODS 

A. Database and protocol 

We collected two time courses of 23 samples each 
measuring extracellular and intracellular DOXO 
concentration in MM1r cell line.  

Two standard curves, for extracellular and intracellular 
DOXO concentration, respectively, were generated by 
exploiting the auto-fluorescence property of the drug (Ex: 
488nm; Em: 560nm). Serial DOXO dilutions were made in 
PBS (from 900 nM to 14 nM) and in PBS;FBS 10% (from 
3000 nM to 187,5 nM), respectively for intracellular and 
extracellular concentration. For each time point, 50 µL of 
PBS or 200 µl of PBS;10% FBS were analyzed in triplicate 
in microplate of 96 wells with TECAN microplate reader 
(Ex: 488nm; Em: 560nm) to detect DOXO-associated 
fluorescence intensity. A linear correlation between 
fluorescence intensity and DOXO concentration was 
achieved for both solutions (Fig.1).  

MM1r cell line was used to study DOXO cellular uptake 
and release. Two days prior the analysis, cells were plated in 
RPMI 1640;10% FBS; Pen/Strep; in microplate of 96 wells 
at a density of 105/well to permit a slight adhesion. For each 
time point, cells were plated in triplicate. After two days, the 
medium was removed from all wells, cells were washed in 
PBS and, at time t=0 hr treated with 1 µM DOXO in PBS, 
10%FBS, 200 µL/well. To observe DOXO uptake, from t = 
0 to t = 1 hrs, every 5 min, 200 µL of PBS; 
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10%FBS+DOXO were moved to an empty well, cells were 
washed once in PBS and maintained in 50 µL of fresh PBS. 
The extracellular (200 µl of PBS; 10%FBS) and intracellular 
(cells in 50 µl of PBS) DOXO-associated fluorescence 
intensities were then acquired with TECAN microplate 

reader. To observe DOXO release by MM1r cells, at t = 1 hr 
DOXO was removed, cells were washed with PBS, and 200 
µl of fresh PBS; 10% FBS were added. Every 5 minutes 
from t = 1 to t = 1.5 hrs and at t = 2, 2.5, 3 hrs, extracellular 
and intracellular DOXO fluorescence intensity was collected 
with the same approach used for the uptake study. For each 
time point, both extracellular and intracellular DOXO 
concentrations were obtained by fluorescence intensity using 
the respective standard curves described above (Fig. 2). To 
note, extracellular and intracellular concentrations at t = 0.66 
hr and t = 0.25 hr, respectively, showed a high variability in 
the triplicate measurements (standard deviations >400% of 
the average ones), likely due to a failure in the experimental 
procedure. Therefore, these samples were excluded from the 
following analysis.  

 

B. Modeling DOXO Pharmacokinetics 

We compare three model structures describing DOXO 
pharmacokinetics (PK), as summarized in Table I.  

A first simple structure (Model 1) is considered based on 
a recent work describing DOXO PK in breast cancer cell 
lines [5]. It is a linear three-compartment model describing 
DOXO concentrations in the extracellular (𝑋𝐸) and 
intracellular compartments (𝑋𝐼). This latter is composed by 
two compartments representing free intracellular DOXO (𝑋𝐹) 
and DOXO bound to the DNA (𝑋𝐵) inside the cell nucleus, 
where 𝑋𝐼(𝑡) =  𝑋𝐹(𝑡)+ 𝑋𝐵(𝑡). The input is delivered as a 
DOXO dose impulse in the extracellular compartment. No 
drug degradation is taken into account, since its half-life (~17 
hrs [11]) is much higher than the duration of the experiment 
(i.e., 3 hrs) and because the experiments are performed under 
a controlled environment. 𝑘𝐹𝐸 and 𝑘𝐸𝐹 are the rate constants 
describing DOXO transit from extracellular to free 
intracellular compartment and vice versa, respectively. 𝑘𝐵𝐹  is 
the rate constant describing binding of free intracellular 
DOXO to DNA, which is assumed to be irreversible. 𝑉𝐸  is 
the volume of the extracellular compartment, which was set 
to 200 µL, i.e., the volume of media in each well. 𝑉𝐼  is the 
volume of the intracellular compartment which is calculated 
by multiplying the number of cells seeded (~105) by an 
estimate of the single cell volume, considering the cell as a 
sphere with diameter equal to 10 µm.  

Model 2 and 3 are derived from Model 1 with an extra 
control on 𝑘𝐸𝐹 rate constant from the intracellular bound 
DOXO (𝑋𝐵(𝑡)) compartment. In this scenario 𝑘𝐸𝐹(𝑋𝐵(𝑡)) is 
modeled in terms of a Hill function as reported in Table I 
(fourth equation, third row). The Hill function typically 
describes threshold and saturation phenomenon [12] and is 
defined by three parameters: 𝑘𝑡ℎ  denotes the 𝑋𝐵(𝑡) 
concentration at which 𝑘𝐸𝐹(𝑋𝐵(𝑡)) is half its maximum value 
𝑉𝑚𝑎𝑥. The Hill coefficient 𝑞 determines the sharpness of the 
transition. Note that for 𝑞 = 1 the Hill relation collapses to 
the Michaelis-Menten form, capable to describe only pure 
saturation controls [12]. In particular, Models 2 and 3 are 
characterized to have a Michaelis-Menten (𝑞 = 1) and a Hill 
function (𝑞 = 2) controls on 𝑘𝐸𝐹(𝑋𝐵(𝑡)), respectively.  

For all the three model structures, the input function is 
𝐼(𝑡) = 𝐷 ∙ 𝑢(𝑡), where 𝐷 = 1000 nM is the known DOXO 
dose concentration and 𝑢(𝑡) = 𝛿(𝑡) is a Dirac delta.  
 

 

 
 

Fig.2 DOXO concentration time courses. Extracellular (upper panel) and 

intracellular (lower panel) DOXO concentrations are reported in blue and 

orange, respectively. Concentrations are expressed in [nM]. 

 
 

Fig.1 Linear regression between fluorescence intensity and DOXO 

concentration in intracellular (PBD, upper panel) and extracellular 

(PBS+FBS, lower panel) compartments. 
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C. Model identification 

For 𝑡 = 0, … ,3 hrs, the measurement vector is: 

 𝒚(𝑡) = [𝑦1(𝑡) 𝑦2(𝑡)] = [𝑋𝐸(𝑡) 𝑋𝐼(𝑡)]   
 

in other words, the extracellular and the total intracellular 
compartments are observable.  

The measurement model we have chosen to perform the 
parameter identification is the following:  

 

𝑦2(𝑡) = 𝑋̂𝐼(𝑡; 𝜽𝒊)+ 𝑒(𝑡),    𝑖 = 1,2,3;   𝑡 = 𝑡1,… . , 𝑡𝑁   
 

where 𝑋̂𝐼(𝑡; 𝜽𝒊) is the i-th model prediction for the total 
intracellular compartment and 𝑦2(𝑡) is the system output 
related to the measurements of the free compartment 
corrupted by a zero-mean white Gaussian noise 𝑒(𝑡) of 

known variance 𝜎2(𝑡), i.e., 𝑒(𝑡)~𝒩(0, 𝜎2(𝑡)). The variance 

of the measurement error was calculated at each time point 
by exploiting the time series in triplicate. 

𝜽𝒊 is the parameter vector for the three investigated model 
structures. In particular, 𝜽𝟏 = [𝑘𝐹𝐸  𝑘𝐸𝐹 𝑘𝐵𝐹] for the Model 1 
and 𝜽𝟐/𝟑 = [𝑘𝐹𝐸  𝑘𝐸𝐹 𝑘𝐵𝐹 𝑉𝑚𝑎𝑥 𝑘𝑡ℎ] for the Models 2 and 3. 

𝑞 is fixed for Models 2 and 3, as described in section B.  
The parameter vectors 𝜽𝒊 where estimated by means of 

nonlinear weighted least squares (WLS) implemented in 
MATLAB 2020b (Natick , MA) in order to fit the time 
courses of the total intracellular compartment 𝑋𝐼(𝑡). 
Therefore, we can write:  

 

           𝜽̂𝒊
𝑾𝑳𝑺 = argmin

𝜽𝒊
𝑊𝑅𝑆𝑆(𝜽𝒊)                              

          = argmin
𝜽𝒊
‖𝒚𝟐 − 𝑿̂𝑰(𝑿̂𝑭, 𝑿̂𝑩 ,𝑿𝑬; 𝜽𝒊)‖𝚺𝒆

2
 

 𝑠. 𝑡.  𝑋𝐸(𝑡) = 𝑦2(𝑡), 𝑡 = 𝑡1,… . , 𝑡𝑁    

 

where 𝜽̂𝒊
𝑾𝑳𝑺 is the parameter vector estimate and 𝑊𝑅𝑆𝑆(𝜽𝒊) 

is the weighted residual sum of squares that can be written as 

the squared norm of the residuals, 𝒓𝒆𝒔 =  𝒚𝟐 −
 𝑿̂𝑰(𝑿̂𝑭, 𝑿̂𝑩 ,𝑿𝑬; 𝜽𝒊), weighted on the covariance matrix 

𝚺𝒆 = 𝐶𝑜𝑣(𝒆) of the measurement error vector 𝒆 =
[𝑒(𝑡1) ⋯  𝑒(𝑡𝑁)]. 𝑿̂𝑰(𝑿̂𝑭, 𝑿̂𝑩 ,𝑿𝑬; 𝜽𝒊) is the prediction vector 

of the model, for the total intracellular compartment, obtained 
by solving the system of differential equations in Table I with 
parameter vector 𝜽𝒊. The condition “𝑠. 𝑡.  𝑋𝐸(𝑡) = 𝑦2(𝑡),
𝑡 = 𝑡1,… . , 𝑡𝑁” implies that the extracellular compartment 
was treated as an experimentally controlled input function 
and was not fit by the model.  

We point out that initial parameter values were fixed to 
parameters found for similar model structures in breast 
cancer cell lines [5].  

As detailed in section II.A, the intracellular measurement 
at time t = 0.25 hrs was assumed to be an outlier and hence its 
contribution was not considered during the parameter 
estimation.    

D. Model validation and selection  

The best model structure was selected among the three 
candidates based on different criteria. Firstly, for each model 
the Akaike information criteria (AIC) [12] has been 
computed as: 

 

 𝐴𝐼𝐶𝑖 = 𝑊𝑅𝑆𝑆(𝜃𝑖) + 2𝑃𝑖, 𝑖 = 1,2,3   

 

where 𝐴𝐼𝐶𝑖 and 𝑃𝑖 are the 𝐴𝐼𝐶 and number of parameters of 
the i-th model structure, respectively. 

Besides AIC, we also made sure to obtain consistent 
results in terms of WRSS and of a posteriori identifiability 
assessed in terms of precision of parameter estimates 
(coefficient of variation (CV) below 100 %), as well as by 
looking at the average CV for the estimated parameters. CV 
is obtained from the inverse of the Fisher information matrix 
[12]. Randomness of the residuals was assessed by the Runs  

 

TABLE I. COMPARTMENT MODELS OF DOXO PK 

Model structure Model equations 
Number of  

parameters 

 

{
 
 

 
 𝑋̇𝐸(𝑡) =  𝑘𝐸𝐹

𝑉𝐼

𝑉𝐸
𝑋𝐹 (𝑡) − 𝑘𝐹𝐸  𝑋𝐸 (𝑡) + 𝐼(𝑡)                𝑋𝐸(0) = 0

𝑋̇𝐹(𝑡) =  𝑘𝐹𝐸
𝑉𝐸

𝑉𝐼
𝑋𝐸 (𝑡) − 𝑘𝐸𝐹  𝑋𝐹 (𝑡) − 𝑘𝐵𝐹  𝑋𝐹(𝑡)                𝑋𝐹(0) = 0

𝑋̇𝐵(𝑡) =  𝑘𝐵𝐹  𝑋𝐹 (𝑡)               𝑋𝐵 (0) = 0

 3 

 

{
 
 

 
 𝑋̇𝐸(𝑡) =  𝑘𝐸𝐹(𝑋𝐵 (𝑡))

𝑉𝐼

𝑉𝐸
𝑋𝐹 (𝑡) − 𝑘𝐹𝐸  𝑋𝐸 (𝑡) + 𝐼(𝑡) 𝑋𝐸 (0) = 0

𝑋̇𝐹(𝑡) =  𝑘𝐹𝐸
𝑉𝐸

𝑉𝐼
𝑋𝐸 (𝑡) − 𝑘𝐸𝐹(𝑋𝐵 (𝑡)) 𝑋𝐹 (𝑡) − 𝑘𝐵𝐹  𝑋𝐹 (𝑡) 𝑋𝐹 (0) = 0

𝑋̇𝐵(𝑡) =  𝑘𝐵𝐹  𝑋𝐹 (𝑡) 𝑋𝐵 (0) = 0

 

 

  𝑘𝐸𝐹(𝑋𝐵 (𝑡)) =  
𝑉𝑚𝑎𝑥 𝑋𝐵 (𝑡)

𝑞

𝑘
𝑡ℎ

𝑞
+ 𝑋𝐵 (𝑡)

𝑞
,     𝑞 ∈ {1,2} 

5 

Model 1 is described in [10], while Model 2 and 3 are its proposed refinements. Signals u, y1 and y2 represent the DOXO input and extra-/intra-cellular 

DOXO concentration, respectively. Intracellular space, accounting for both free and bound DOXO compartments, is included in t he red area. 
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test for all the three model structures [12]. Moreover, we 
made sure to have estimated parameter values consistent 
with a reasonable biological range, inferred from the current 
literature [12]. 

III. RESULTS 

A. Model fit and parameter estimation  

Model 1: The model was not capable to predict the 
intracellular DOXO data, apart from the first transient phase, 
as shown in Fig.3. In particular, the model completely lacks 
capacity to describe the first decreasing phase occurring 
between 0.5 and 1 hrs. This was probably due to the model 
structure not entirely suitable to describe the observed 
phenomena. On the other hand, model parameters were 
estimated with good precision, with all CV lower than 40% 
(Table II).  

Model 2: Compared to Model 1, Model 2 was able to 
better predict the data, particularly improving the 
performance during the decreasing phase after the first 0.5 
hrs of DOXO treatment (Fig. 3). Precision of parameter 
estimates was not satisfactory, specifically CV was higher 
than 100% for both 𝑉𝑚𝑎𝑥 and 𝑘𝑡ℎ  estimates (Table II). This is 
probably due to the need for a mixed effect between 
threshold and saturation acting on 𝑘𝐸𝐹, while a Michaelis-
Menten control accounts only for the saturation effect. 

Model 3: The model was able to predict the data 
qualitatively and quantitatively. It was capable to well 
describe the decreasing phase after the first 0.5 hrs of DOXO 
treatment, as well as the final decreasing phase, after DOXO 
withdrawal (Fig. 3). Model parameters were estimated with 
good precision, with all CV<100% (Table II). This suggests 

that the saturation-threshold mechanism introduced by a 
Hill-based control on 𝑘𝐸𝐹 is well suited to properly describe 
the observed phenomenon. Parameter estimates were 
biologically plausible, as well (Table III).    

B. Model selection  

Model comparison is summarized in Table III. Model 3 
provided the best parameter estimate precision (on average, 
𝐶𝑉̅̅ ̅̅ = 23.94% and 𝐶𝑉̅̅ ̅̅ = 22.57%, for Model 1 and 3, 
respectively). However, Model 3 showed the best qualitative 
coherence with the data, as shown in Fig. 3, and the lowest 
AIC and WRSS indexes. Therefore, Model 3 was selected as 
the most parsimonious. 

In Fig. 4 we show the Model 3 predictions of the three 
state variables. We can observe how the model predicts a 
very low amount of DOXO bound to the cell DNA with 
slow dynamics, and free intracellular DOXO results very 
close to the total intracellular DOXO concentration.   

IV. CONCLUSION 

Doxorubicin (DOXO) uptake and release by multiple 
myeloma (MM) cell line was performed taking advantage of 
autoflourescent property of the drug. The obtained dataset 
was used to propose a mathematical model of DOXO PK in 
MM cells capable of describing the DOXO drug distribution 
in the extracellular and intracellular compartments. The 
intracellular compartment was considered to be composed of 
two further compartments related to free and bound DOXO. 
The mathematical model structure was selected among three 
possible candidates. The first model structure (Model 1) was 
chosen from a recent linear model of DOXO PK in breast 
cancer cell lines [5]. However, in our data we notice a clear 
decrease of intracellular DOXO after the first 0.5 hrs of 
treatment, which Model 1 was unable to properly predict. 

 
 

Fig.3 Intracellular DOXO data (black dots) against prediction obtained 

with Model 1 (orange line) Model 2 (yellow line) and Model 3 (purple 

line), respectively.  

 
TABLE II. MODEL PARAMETER ESTIMATES 

Model 
𝑘𝐹𝐸 

[ℎ𝑟−1] 

𝑘𝐵𝐹 

[ℎ𝑟−1] 

𝑘𝐸𝐹 

[ℎ𝑟−1] 

𝑘𝑡ℎ 

[𝑛𝑀] 

𝑉𝑚𝑎𝑥 

[ℎ𝑟−1] 

1 
1.77e-04 
(20%) 

0.05 
(31%) 

8.48 
(21%) 

- - 

2 

7.76e-05 

(12%) 

0.08 

(26%) 
- 

18.01 

(167%) 

38.21 

(133%) 

3 
7.05e-05 
(10%) 

0.08 
(27%) 

- 
2.28 

(36%) 
8.66 

(17%) 

Precision of parameter estimates is reported between parenthesis as 

coefficient of variation (CV, defined as the ratio between the standard 

deviation of the estimated parameter and the parameter value). 

TABLE III. MODEL COMPARISON 

Model 𝑊𝑅𝑆𝑆 𝐶𝑉̅̅ ̅̅  % 

Plausibility of 
Model  

Parameters* 
𝐴𝐼𝐶 

1 82.52 23.94% Yes 88.52 

2 
22.17 84.48% Yes 30.17 

3 17.88 22.57% Yes 25.88 

*Plausibility of model parameters assessed in terms of the biological range 

inferred from literature. 

 

 
 

Fig.4 Intracellular DOXO data (black dots) against Model 3 prediction (red 

line), with its free (blue dashed-dotted line) and bound (green dashed line) 

contributions.  
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This drug decrease might be attributable to a drug resistance 
mechanism activated after a proper delay. It is well known 
that DOXO is a strong inducer of cell death but it is 
ineffective in P-glycoprotein (Pgp)-expressing cells that can 
favor the DOXO efflux into the extracellular compartment, 
hence providing a drug-resistance mechanism [9], [10]. It 
could be possible that the activation of the Pgp trafficking 
from intracellular Pgp buffer towards the cell membrane [9], 
[10] is responsible for the drug-resistant mechanism, as well 
as the related delay. For this reason, we have introduced other 
two model structures capable of accounting for the DOXO 
decreasing phenomenon. Since the Pgp activity was not 
explicitly measured in this work, we phenomenologically 
modeled the efflux rate control (𝑘𝐸𝐹) through the DOXO 
bound compartment through a Michaelis-Menten control 
(Model 2) or a Hill-based control (Model 3).  

Despite a similar good performance in terms of parameter 
estimate precision between Models 1 and 3, Model 3 resulted 
to be the most parsimonious model in terms of WRSS and 
AIC index. This result suggests that in MM the DOXO drug 
resistance may be mediated by a threshold/saturation control 
of the DOXO bound to the DNA. In a more mechanistic 
scenario, it could be plausible to assume that the DOXO drug 
resistance mechanism in MM cells is a threshold/saturation 
control related to the Pgp cellular trafficking activated by the 
presence of intracellular DOXO drug. 

Finally, the model well described the intracellular DOXO 
compartment and was used to predict the DOXO bound 
inside the cell nucleus. This latter was predicted to have a 
very low concentration and slow dynamics, suggesting that 
only a little fraction of the DOXO drug reaches the nucleus 
hence inducing the cell death. This is another interesting 
result and suggests that 𝑘𝐵𝐹  rate constant could be an 
important parameter to tune in order to increase the drug 
efficiency. However, these results call for further experiments 
to prove that only a small DOXO fraction binds the cell 
DNA, as well as to prove that Pgp trafficking is responsible 
for the drug-resistance behavior observed in the experiments. 
This will also allow to properly assess model robustness. 
Indeed, here we used a single set of experimental data, 
precluding the evaluation of possible model overfitting. 

This work represents a first starting point for a deeper 
investigation of DOXO PK in order to mechanistically 

understand the drug resistance features of MM cell lines. 
Further important questions will regard the potential dose-
dependent DOXO PK, as well as investigating the DOXO PK 
variability among different MM cell lines. As far as we 
know, this is the first work modeling the DOXO PK in MM 
cells, as well as showing a potential evident drug-resistance 
mechanism. 
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