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Abstract— The coronavirus disease 2019 (COVID-19) has
become a global pandemic. The segmentation of COVID-19
pneumonia lesions from CT images is important in quantitative
evaluation and assessment of the infection. Though many
deep learning segmentation methods have been proposed, the
performance is limited when pixel-level annotations are hard
to obtain. In order to alleviate the performance limitation
brought by the lack of pixel-level annotation in COVID-19
pneumonia lesion segmentation task, we construct a denoising
self-supervised framework, which is composed of a pretext
denoising task and a downstream segmentation task. Through
the pretext denoising task, the semantic features from massive
unlabelled data are learned in an unsupervised manner, so as to
provide additional supervisory signal for the downstream seg-
mentation task. Experimental results showed that our method
can effectively leverage unlabelled images to improve the
segmentation performance, and outperformed reconstruction-
based self-supervised learning when only a small set of training
images are annotated.

Clinical relevance—The proposed method can effectively
leverage unlabelled images to improve the performance for
COVID-19 pneumonia lesion segmentation when only a small
set of CT images are annotated.

I. INTRODUCTION
The coronavirus disease 2019 (COVID-19) was first rec-

ognized in December 2019. Due to its contagious nature and
lack of appropriate vaccines, it has been rapidly spreading
to most countries worldwide and developed into a global
pandemic [1]. As is reported by the center for systems
science and engineering at Johns Hopkins University, there
are globally 150 million cases confirmed COVID-19, with 3
million global deaths (updated 1 May, 2021) [2].

COVID-19 is an infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
[3], whose common symptoms include cough, fever and
shortness of breath and pneumonia [4]. Though reverse tran-
scription polymerase chain reaction (RT-PCR) has become
one of the golden standards in terms of COVID-19 diagnosis,
it is shown to have a high false negative rate due to the
practical issues in sample collection and transportation.

Medical images can be used as a complementary tool
for detecting and evaluating COVID-19 infections [5], [6].
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Fig. 1. (a) Clean CT image of COVID-19 patient. (b) CT image of COVID-
19 patient with Gaussian noise. The pneumonia GGO lesion is indicated in
the red circle.

The typical pneumonia lesions such as Ground-Glass Opac-
ity (GGO) in the early stage and pulmonary consolidation
in the late stage [7] could be observed from Computed
Tomography (CT) slices, as shown in Fig. 1.(a). What’s
more, the segmentation of pneumonia lesions is important
in the assessment of COVID-19 patients. Nevertheless, the
manual segmentation for 3D volumes is laborious and time-
consuming. In addition, manual segmentation of CT images
is also a subjective task, since it can be easily influenced by
the clinical experience and individual bias of the radiologists.
Thus, an effective automatic segmentation method is highly
required for COVID-19 in clinical practice.

After the outbreak of COVID-19, a lot of methods based
on deep learning have been proposed for segmenting the CT
images of COVID-19 [8], [9], [10]. Despite of the powerful
ability of deep neural networks to learn visual features,
their performance greatly depends on the scale of training
data. Since obtaining sufficient pixel-level annotated data
for segmentation is quite expensive and infeasible during
the pandemic time, the performance of those data-driven
methods is limited.

In order to alleviate the shortage of annotated medical
images, this paper aims to propose a feature learning algo-
rithm in a self-supervised manner. Self-supervised mecha-
nism can learn features from unannotated data effectively
by exploiting the internal structure of data. The core of the
self-supervised framework is to design an appropriate pretext
to fully exploit massive unlabelled data. [11]. Since most
networks follow the encoder-decoder design paradigm for
medical image segmentation, the architecture can also be
used in image denoising task [12]. In our work, we find
that forcing the network to reduce the Gaussian noise added
on the COVID-19 CT images facilitates the internal feature
learning. Thus, we propose a self-supervised framework for
COVID-19 lesion segmentation by image denoising.
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Fig. 2. The pipeline of the proposed self-supervised framework.

The framework proposes to perform the denoising pretext
task, where the semantic features from massive unlabelled
data can be extracted. Then, the features are transferred to the
downstream task to enhance the segmentation performance
when only limited annotations are available. Our underlying
hypothesis is that doing well on the denoising task requires
networks to learn the internal visual features of CT images.
If networks do well in the denoising task, they must extract
the critical features of the pneumonia lesion from massive
unlabelled data, which will provide surrogate supervisory
signal for the segmentation task. In this way, the performance
limitation due to the lack of annotated data can be alleviated.
Most of the states-of-the-arts image segmentation networks
utilize an encoder-decoder architecture, which can also be
used in image denoising tasks. Therefore, the proposed
framework can be implemented with different network struc-
tures.

In this paper, we explore the way to utilize massive unla-
belled data and construct a framework tailored for COVID-
19 lesion segmentation in a self-supervised method, so as
to alleviate the shortage of annotated data. We evaluate our
method by extensive experiments for different amount of an-
notated data and different segmentation backbone networks.
For the most frequently used UNet architecture, on a testing
set of 50 cases, with 220 cases for denoising pretext task and
40 cases for downstream segmentation task, the framework
improves the volume-level dice by 1.25%, which shows the
effectiveness of our method.

II. METHOD

For COVID-19 segmentation task, due to laborious manual
segmentation, only a small set of images are annotated,
which means the given dataset D can be divided into the
labelled set Dl = {(X1, Y1), (X2, Y2), ..., (Xl, Yl)} and the
unlabelled set Du = {Xl+1, Xl+2, ..., Xl+u}, where l � u.
Thus, we explore the method to fully utilize unlabelled data
for segmenting COVID-19 lesion and construct a pipeline
for the task. As shown in Fig. 2, the pipeline consists
of two tasks which are the pretext denoising task and the
downstream segmentation task. In the pretext task, we add

Algorithm 1 The Training Procedure of the Framework
Input: Network with scratch parameters F (θ),
labelled dataset Dl = {(X1, Y1), (X2, Y2), ..., (Xl, Yl)},
unlabelled dataset Du = {Xl+1, Xl+2, ..., Xl+u}
Output: Optimized network F (θ∗)
for each Xi ∈ Du do

add Gaussian noise to image Xi ← N(Xi|µ,Σ2);
calculate the output F (Xi|θ);
calculate the perceptual loss Lp as Eq(2);
update the parameter of the network θ ← θ − α∂Lp

∂θ
end
for each (Xi, Yi) ∈ Dl do

calculate the output F (Xi|θ);
calculate the dice loss Ld = 1− 2·Yi·F (Xi|θ)+ε

Yi+F (Xi|θ)+ε ;
update the parameter of the network θ ← θ − α∂Ld

∂θ
end

Gaussian noise to unlabelled data for denoising. Then, the
noised and original images are used as training data and
labels respectively to train the network with perceptual loss
[13]. In order to transfer the features learned from the
massive unlabelled data, we fine-tune the network using
annotated images in a supervised method. With the learned
features during the pre-training for the pretext task, the
performance of the downstream segmentation task can be
greatly improved. The training procedure of the framework
is summarized in Algorithm 1.

A. Pretext Denoising Task

The objective of the pretext task is to learn the semantic
features in an unsupervised paradigm. In order to achieve
this objective, we propose to train the segmentation network
F (·) to reduce the artifacts applied to the images X ∈ D.
Specifically, we denote N(·|µ,Σ2) to be the operator to
apply Gaussian noise, where µ and Σ2 are the mean vector
and covariance matrix of the Gaussian distribution. The
segmentation network F (·) gets the noised image X ′ =
N(X|µ,Σ2) as input and yields the denoised image as
output I = F (X ′|θ), where θ is the parameters of network
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Fig. 3. Visual comparison of segmentation results obtained by different
methods when only 40 volumes in the training set were annotated.Red
and blue curves indicate the network predictions and the labelled mask,
respectively.

F (·). Therefore, the training objective function of the pretext
task is:

min
θ

1

u+ l

u+l∑
i=1

Ld(Ii, Xi). (1)

Typically, Mean Squared Error (MSE) loss function is
frequently used in the denoising task, trying to minimize
the pixel-wise error between the network output and the
original image. However, MSE can bring about blurs and
distortions in output images, which hinders the network to
learn semantic features from the pretext task. Therefore, we
employ a perceptual loss [13] to make the network learn
more high-level features, so as to gain more details from the
noised image. Besides, a total variance regularization is also
added to smoothen the output image. The total loss function
for the denoising task is given below:

Ld =
1

wFhF dF
‖V GG(I)− V GG(X)‖1

+ λ
1

wIhI

∑
i,j

((Ii,j−1 − Ii,j)2 + (Ii+1,j − Ii,j)2).
(2)

Here V GG() is a feature extractor implemented by the
pre-trained VGG-19 [14] on ImageNet, where we obtain the
feature map from the 16th layer of VGG-19. It is worth
noting that we pad the 3 input channels of VGG-19 by the
original single channel CT image for implementation. wF ,
hF and dF represent the width, height and depth of the
obtained feature map. λ is to control the relative weights
between perceptual loss and total variance regularization. wI
and hI are the width and height of the network output I .

B. Downstream Segmentation Task

In the downstream task training phase, we follow the
supervised learning paradigm and train the network with a
small amount of labelled data Dl to make the features learned
in the pretext task applicable for COVID-19 segmentation.
For the sample (Xi, Yi) from Dl, Xi and Yi represent the
original CT slice and the segmentation mask respectively.
In the pretext training phase, we extract critical features
from massive unlabelled data with the network F (·|θ). In
order to transfer the features we obtained and facilitate the
segmentation, we use (Xi, Yi) to update the parameters in

Fig. 4. Quantitative comparison of different methods with different numbers
of annotated volumes for training.

the network by minimizing the dice loss:

min
θ

1

l

u+l∑
i=u+1

DiceLoss(F (Xi|θ), Yi) (3)

III. EXPERIMENTS AND RESULTS

A. Data and Implementation Settings

For the experiments, images of 330 COVID-19 patients,
which have a large range of inter-slice spacing (0.625mm-
8.0mm) and the pixel size (0.61mm-0.93mm). Since the
images are of different sizes, we center crop and resize the
images to the same size (256×256). The total 330 cases of
the dataset were randomly split into 220, 40, 20 and 50 cases
with 29772, 5330, 3230 and 5829 slices for unsupervised
training, supervised training, validation and testing. Two
experts manually annotated the ground truth masks with
consensus. Since the amounts of slices for different cases are
of great difference, the testing dice coefficient is calculated
on a volume-level.

The experiments are conducted on a workstation with a
NVIDIA RTX 2070 super. Adam optimizer is implemented
with a mini-batch of 16, weight decay 10−5, and cosine
annealing. For both pretext and downstream training, the
learning rate are set to 10−3 and 5×10−3, the training epochs
are 20 and 150 respectively.

B. Comparison for Different Amounts of Labelled Cases

In this experiment, we compare our denoising framework
(self-denoising) with supervised method (fully-supervised)
and the self-supervised method of image reconstruction (self-
reconstruction). For the comparative method, the pretext
task is to reconstruct the original images from images with
a 64 × 64 randomly selected missing region. Both two
self-supervised methods use the same experiment settings.
With UNet [15] as the backbone segmentation network, we
first implement the pretext task to learn from unannotated
data. Then, the pre-trained model is fine-tuned to validate
the effectiveness of the supervisory signal provided by the
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TABLE I
DICE SCORES ACHIEVED BY DIFFERENT METHODS UNDER DIFFERENT NUMBERS OF ANNOTATED VOLUMES IN THE TRAINING SET

Method 5 cases 10 cases 15 cases 20 cases 25 cases 30 cases 40 cases
Fully-Supervised 56.98± 20.76 73.14± 15.34 75.44± 11.99 79.85± 11.07 80.86± 10.22 79.91± 10.56 80.52± 10.93
Self-Reconstruction 60.61± 20.13 72.68± 15.39 77.49± 12.98 77.94± 11.30 80.22± 10.96 80.86± 10.65 81.99± 10.12
Self-Denoising 64.72 ± 19.94 76.71 ± 12.95 79.09 ± 11.35 80.53 ± 11.94 81.80 ± 10.54 81.99 ± 9.97 82.23 ± 10.03

TABLE II
THE RESULTS OF DIFFERENT SEGMENTATION NETWORKS WITH 40

CASES IN SELF-DENOISING AND FULLY-SUPERVISED

Method PSPNet UNet UNet++
Fully-Supervised 80.99± 10.97 80.52± 10.93 82.21± 10.21
Self-Denoising 81.98 ± 10.44 82.23 ± 10.03 83.35 ± 9.65

pretext task, using 5, 10, 15, 20, 25, 30 and 40 cases of
annotated data respectively.

Fig. 3 demonstrates the qualitative comparison of the
predictions generated by three different methods in the exper-
iment. According to the results shown in Table 1 and Fig. 4,
we can observe that the proposed self-denoising framework
can enhance the best segmentation results for all the amounts
of cases, whereas the self-reconstruction approach fails to
obtain better segmentations than fully-supervised method in
three settings. This observation indicates emphasizes that the
proposed pretext framework is appropriate and effective for
COVID-19 segmentation task. When the number of anno-
tated cases is 40, self-denoising get the best segmentation
performance (Dice=82.23%). It is worth noting that as the
amount of labelled data decreasing, the dice improvement
increases, which demonstrates that the pretext task improves
the network’s feature representation ability by leveraging
unlabeled images.

C. Effectiveness for Different Backbone Networks

Since our training method was not designed for a specific
network structure, in this experiment, we verify the effec-
tiveness of the framework for different backbone networks.
Except for UNet, we additionally select two states-of-the-arts
segmentation networks, which are PSPNet [16] and UNet++
[17]. All the labelled 40 cases containing 5330 slices are used
in this experiment. It should be noted that all the experiment
settings are the same except for the backbone network. The
experimental results are presented in Table 2.

It can be seen that UNet++ obtains the best dice (83.35%)
in both two methods, since PSPNet was initially proposed
for natural image segmentation and UNet++ is an improved
version of UNet. The proposed framework can improve all
the three segmentation networks, so that our proposed self-
supervised pipeline is general for different networks.

IV. CONCLUSION

In this work, we construct a self-supervised framework
for COVID-19 segmentation task by image denoising. The
pretext denoising task helps the encoder-decoder networks
to utilize the abundant unlabelled data for the downstream
segmentation task, so as to improve the segmentation per-
formance. According to the experimental results, it can be

observed that the framework can improve the segmentation
performance in terms of different amount of labelled data
and different segmentation networks.
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