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Abstract—This paper proposes an evaluation/treatment sup-
port system enabling automatic determination of wound eval-
uation indices from RGB-depth images and fully convolutional
networks (FCNs). Segmentation experiments based on wound
images and surface area determination experiments based on
artificial images showed reduced errors and smaller param-
eters/higher levels of tissue classification than with previous
approaches (proposed: 65.8 %; conventional: 60.2 %), thereby
demonstrating the effectiveness of the technique.

I. INTRODUCTION
Illness and injury often require prompt emergency mea-

sures, treatment and medication in line with severity. Nev-
ertheless, in the case of wounds, performing self-diagnosis
and self-treatment without a medical background can cause
infection and slow down the healing process. On the other
hand, visiting a doctor only to check the severity of the
wound is impractical considering the cost that has to be paid
by the patient and the limited number of doctors. It would be
useful if mobile devices could be used to evaluate severity
of wounds without the need for a medical visit.
Photographic Wound Assessment Tool (PWAT) is one of

the standard metrics that physicians use to estimate wound
severity [1]. It determines whether a wound is serious or not
by visually inspecting the wound and measuring eight indices
related to the wound’s size and depth and the state of the
cellular tissue. The visual examination, however, is difficult
to quantify and may lead to inaccurate results. Besides, ob-
taining reliable results requires expertise in observing types
of wounds and tissue in wound base. Therefore, developing a
mobile application that can assess the severity of the wound
is necessary.
Previous works have attempted to solve that problem by

developing a wound assessment algorithm that can estimate
the wound area and classify the tissue types. Kolesnik et al.
[2] performed pixel-to-pixel classification to identify wound
on an image with color and textures features and Support
Vector Machine (SVM). The experimental results suggested
that combining both color and texture features yielded a
higher performance rate than processing each feature sep-
arately. Liu et al. [3] proposed a DNNs model to segment
wound areas and investigated the trade-off between the
model’s parameter and its accuracy. The experimental results
demonstrated that the model could achieve high accuracy
results, even with a small number of parameters, and could be
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used in mobile devices. While the segmentation wound algo-
rithm attempted to differentiate wound and not wound pixel,
previous studies on the cellular-tissue classification methods
classified tissue type on the wound area. Employing AlexNet,
Nejati et al. [4] classified seven different tissue types, while
Ronneberger et al. [5] proposed U-Net to perform three-type
fine-grained tissue classification. In another study, Fliko et
al. [6] found that using RGB images and depth information
to segment and measured wound area yielded more accurate
results.
Despite their promising classification performance, previ-

ous studies have not provided a practical assessment method
that considers the wound’s location, size, and tissue. Also,
since the previous method algorithms involve a complex
algorithm and require a large number of parameters, imple-
menting them on a mobile device is difficult.
This paper proposes RoleNet (Role-oriented Fully Convo-

lutional Networks) to segment the wound area and classify
the tissue type on it. RoleNet comprises wound segmen-
tation and tissue classification models that perform sparse
estimation of the wound area and fine-grained classification
of the three tissue types (granulation, necrotic, and sloughy).
This allows the model to have a high accuracy rate with few
parameters, thus making it feasible to be implemented in a
mobile device. Moreover, this paper proposes an evaluation
system employing the RoleNet to quantitatively assess the
wound severity based on PWAT model.

II. WOUND ASSESSMENT WITH PWAT
Fig. 1 depicts the proposed method that estimates the

wound area and identifies tissue type using RGB images
and depth information from a mobile camera. Employing
3D point group data, the proposed approach automatically
calculates the size of the wound and cellular tissues.
A. Noncontact Area Presumption Using 3D Point Group
Data
Using a mobile device equipped with an RGB-D sensor

such as the iPhone X, point cloud data with RGB and 3D
information of each pixel was acquired. Then, a point group
area estimation algorithm was applied to measure the wound
area in 3D space. The proposed framework grouped data
points with a sliding window; each three-point insides the
window was grouped with a triangle while two triangles were
used to connect four points.

B. RoleNet Architecture

Fig. 2 shows the RoleNet architecture. RoleNet consists
of two models that estimate wound area and classify tissue
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Fig. 1. The framework of the proposed system

types, respectively.
The wound-area estimation model utilizes stacked convo-

lution and pooling layers to extract features from the input
image. Then using the extracted features, the model performs
upsampling and segment the wound area.
The tissue-type classification model categorizes each pixel

of the wound images into three categories: granulation,
necrotic, and sloughy. After merging the input image with
the probability map of the wound area, an encoder model
is employed to extract features for tissue-type classifica-
tion. In this step, features from shallow layers are com-
bined with the deeper layer features by using a contracting
path [5]; this increases the sharpness of the output image
and improves the accuracy of the tissue-type classification
model. Using stacked convolution and upsampling layers,
the model performs pixel-to-pixel tissue-type classification.
This architecture enables the model to perform both wound
area segmentation and tissue-type classification with a small
number of parameters.
To further reduce the number of the proposed model’s

parameters and increase its accuracy, proposed model em-
ploys depthwise separable [7] and atrous convolution [8]
networks in CNNs block and perform downsampling us-
ing stride [9]. Depthwise separable convolution reduces the
number of parameters by splitting the convolution kernel
into depthwise and pointwise convolution kernels. Atrous
convolution introduces spacing between the values in the
kernel, thus allowing the model to understand a wider field
of view with smaller parameters. Performing downsampling
with stride prevents loss of informative features by varying
the number of strides in the classification.

C. Model Training
RoleNet model was trained in two steps. First, the param-

eters of the wound area and tissue-type classification models
were estimated separately. Then, the models were conbined
and were jointly retrained.

III. EXPERIMENT
To evaluate the proposed model, four experiments were

conducted: wound area segmentation, tissue type classifi-
cation, the combined tasks, and wound area estimation.

TABLE I
RESULTS OF THE WOUND SEGMENTATION

Model Accuracy mIoU Params
RoleNet 0.883 0.790 2.64 M
U-Net 0.896 0.812 31.4 M

Comparison with U-Net was performed on the first, second,
and third experiments.

A. Experiment on Wound Area Estimation
We collected 40 wound images from a medical book [10]

and made labels based on medical knowledge. The original
size of the images was 480×480. The original ones were
then resized into 256×256. The wound and nonwound areas
were labeled as white and black areas, respectively. Proposed
model performance was evaluated on those images and com-
pared its performance with U-Net’s (Fig. 3) . The data was
split into training (31 images), validation (3 images), and test
(6 images) datasets. Data augmentation was performed on
the training dataset; it included horizontal flipping, vertical
flipping, horizontal translation, vertical translation, shear dis-
tortion, scaling, and rotation. The models were trained using
multi-class cross-entropy loss and Adam optimizer [11] and
evaluated the model’s performance with accuracy and mean
Intersection-Over-Union (mIoU) metric. The batch size, the
number of epochs, and the learning rate were respectively
set to 2, 32 and 0.001.

B. Experiment on Tissue Type Classition
Evaluation on tissue classification was performed on 30

wound images with a size of 256×256 pixels. Each image
consisted of three labels: granulation (red), necrotic (blue),
and sloughy (green) tissues. The training, validation, and test
data comprised 21, 3, and 6 images, respectively. The models
were trained using the same loss function, optimizer, and
metric as the first experiment. The Batch size, the number of
epochs, and the learning rate were 2, 48, 0.001, respectively.

C. Experiment for the Integrated Model
This evaluation scheme validated the performance of the

proposed model on both wound segmentation and tissue
classification. The experimental protocol was the same as in
the second experiment. And two-stacked U-Net was utilized
as the comparison model.

D. Experiment of the Surface Area Estimation
Fig. 4 shows the A4 paper used to print out circles with

different radius demonstrating wounds. The proposed method
estimated the area of the circles on the images taken with
RGB-D sensors on iPhone X 10 times. The distance between
the camera and the object was about 40 cm. Metrics used to
evaluate the model were the mean value, standard deviation,
and relative error.

IV. RESULTS
A. Identification of Wound Area
In Tab. I, even though the proposed model required 91.05

% fewer parameters, it could achieve comparable perfor-
mance. The accuracy and the mIoU of the proposed model
were 1.3% and 2.2 % lower than U-Net’s, respectively.
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Fig. 4. Condition of the experiment of area estimation evaluation(left:
white plane circle to shoot, center: white curved circle to shoot, right:
photographing condition)

TABLE II
RESULTS OF THE TISSUE CLASSIFICATION

Model Accuracy mIoU Params
RoleNet 0.955 0.861 3.04 M
U-Net 0.934 0.809 31.4 M

Besides, the comparison of segmentation results (Fig. 5)
demonstrated that the proposed model made less false-
positive. This result demonstrated that proposed model could
classify wound and nonwound areas.

B. Classification of Wound Tissue
In Tab. II, the proposed model obtained better perfor-

mances. The accuracy and the mIoU result of our method
were 2.1% and 5.2 % higher than U-Net and also RoleNet
required 90.3 % fewer parameters than U-Net. Nevertheless,
the semantic segmentation results suggested that the pro-
posed model often misclassified necrotic tissue as granulation
tissue (the first and the third rows of Fig. 6). This issue might
be caused by the small training set used in this experiment
and the noisy labels because of mislabeling.

C. Performance on Integrated Tasks
Comparison results (Tab. III) demonstrated that the pro-

posed model outperformed two-stacked U-Net. With 90.1%
fewer parameters, the proposed approach obtained 4.7%
and 5.6 % higher accuracy and mIoU, respectively. The
classification results (Fig. 7) suggested that the proposed
DNNs model could differentiate three-type wound tissues
and made less false positive (misclassified non-wound as
wound region) results than U-Net models.

TABLE III
RESULTS OF THE INTEGRATED MODEL

Model Accuracy mIoU Params
RoleNet 0.827 0.658 5.69 M

two-stacked U-Net 0.780 0.602 62.8 M

(a) Image (b) Ground Truth (c) RoleNet (d) U-Net

Fig. 5. Evaluation by test dataset in wound segmentation

D. Estimation of Circles’ Surface Areas
The estimation result (Tab. IV) shows that the proposed

method achieved a high accuracy estimation of the surface
area of most of the circles with less than 3 % relative error,
which is considered accurate enough to be evaluated by
PWAT.
The above results show that the proposed method is effec-

tive for estimating PWAT. In future works, we will evaluate
PWAT using actual wounds with a prototype application of
the proposed system, as shown in Fig. 8.

V. CONCLUSIONS
This paper proposed the image analysis model RoleNet

and the simple estimation system for estimating PWAT
scores. The proposed method automatically estimates three
out of eight items of PWAT. In the experiments, the effec-
tiveness of the proposed method was examined by estimating
the surface area of artificial images and classifying wound
images. In the surface area estimation for artificial images, it
is shown that the proposed method can estimate the real area
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TABLE IV
RESULTS OF THE SURFACE AREA ESTIMATION

r = 0.85 cm r = 1.7 cm r = 2.25 cm
Actual area (cm2) 2.27 9.08 20.43

Estimated area(plane) (cm2) 2.34 ± 0.06 9.23 ± 0.12 20.86±0.09
Standard deviation (cm2) 0.06 0.17 0.09
Relative error (%) 2.99 1.68 2.11

Estimated area(curved) (cm2) 2.43 ± 0.11 9.31 ± 0.14 20.93±0.18
Standard deviation (cm2) 0.11 0.14 0.18
Relative error (%) 6.89 2.59 2.42

(a) Image (b) Ground Truth (c) RoleNet (d) U-Net

Fig. 6. Evaluation by test dataset in tissue type classification

(a) Image (b) Ground Truth (c) RoleNet (d) U-Net

Fig. 7. Evaluation by test dataset for integrated models

with small error. In the wound area estimation and tissue type
classification experiments, the proposed method achieved
lighter models and more accurate classification of wound
images than the conventional method. In the future, we will
further improve the accuracy by increasing the number of
training data and using pre-trained models, and evaluate the
effectiveness of the proposed method on actual wounds.
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