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Abstract— Electrocardiogram (ECG) signal is one of the most 

important methods for diagnosing cardiovascular diseases but is 

usually affected by noises. Denoising is therefore necessary 

before further analysis. Deep learning-related methods have 

been applied to image processing and other domains with great 

success but are rarely used for denoising ECG signals. This 

paper proposes an effective and simple model of encoder-

decoder structure for denoising ECG signals (APR-CNN). 

Specifically, Adaptive Parametric ReLU (APReLU) and Dual 

Attention Module (DAM) are introduced in the model. Rectified 

Linear Unit (ReLU) is replaced with the APReLU for better 

negative information retainment. The DAM is an attention-

based module consisting of a channel attention module and 

spatial attention module, through which the inter-spatial and 

inter-channel relationship of the input data are exploited. We 

tested our model on the MIT-BIH dataset, and the results show 

that the APR-CNN can handle ECG signals with a different 

signal-to-noise ratio (SNR). The comparative experiment proves 

our model is better than other deep learning and traditional 

methods. 

 
Clinical Relevance— This paper proposed a method capable 

of denoising ECG signals with strong noise to alleviate 

difficulties for further medical analysis. 

I. INTRODUCTION 

Cardiovascular disease has become the primary disease 
threatening human life. For a long time, research on 
cardiovascular disease is one of the main topics in the medical 
field. The ECG is a comprehensive manifestation of the 
electrical activity of the heart in the human epidermis and can 
be measured by sensors attached to the human’s chest. 
Therefore, ECG has become a widely accepted method for 
analyzing cardiac conditions of human patients. However, 
ECG signals are usually contaminated by various kinds of 
noises. Common types of noises are power line interference, 
electrode contact noise, motion artifacts, muscle contractions, 
baseline wander. These noises differ in frequency and their 
power changes under different situations. Practical methods 
are required for dealing with these noises before further 
analysis. 

A large scale of traditional denoising methods has been 
developed for a long time. These methods are mainly based on 
Empirical Mode Decomposition (EMD), Fourier transforms, 

 
 

discrete wavelet transform (DWT). However, experiments 
show that these traditional techniques can only handle slightly 
polluted signals or random noise [1]. Additionally, expertise is 
needed to tweak the algorithm's parameters for better 
performance, making application for traditional solutions 
difficult. 

In recent years, we can observe the appearance of many 
deep learning-based algorithms [2, 3]. These methods can 
solve ineffectiveness with strong noise and inconvenient 
applications that traditional denoising methods are facing with 
neural networks. Poungponsri et al. [4] proposed an 
autoencoder used to denoise ECG signals. The structure of this 
network is simple, consisting of 6 convolutional layers and 6 
deconvolutional layers. The network is tested on an SNR of 
7dB, and the average SNR improvement is 9.7dB. Chiang et 
al. [5] designed a deep learning model that combines wavelet 
transform. By replacing ReLU with a set of wavelets as the 
activation functions, this model can increase the SNR by 
3.4dB, with the SNR of input equals 17.7dB. To explore 
different network structures and find the one with better 
performance, Antczak et al. [6] proposed a deep recurrent 
neural network (DRNN). They tested different network 
structures and the effect of pre-training. After finding the best 
combination, they compared the model with a bandpass filter 
and discrete wavelet transform. The result proves this model is 
better than traditional methods. Arsene et al. [1] designed a 
Convolutional Neural Network (CNN) and a Long-Short-
Term Memory (LSTM). They tested the two networks on 
different SNR values, and the result shows that CNN performs 
better than LSTM.  

The quality of ECG signals collected in practical situations 
could be bad, making denoising a challenging task [7]. 
Therefore, methods that are also effective with intense noise 
are needed. In [8], a two-stage denoising method is proposed. 
An autoencoder model is used to eliminate noise in the first 
stage. Then a squeeze-and-excitation-based network is used to 
restore the signal. The experiment proves the validity of this 
method with strong noise. By designing deeper neural network 
models, the denoising performance is increased. Fan et al. [9] 
designed a combination of autoencoder and ResNet. By 
replacing the convolutional layers in the autoencoder with 
residual block, the model reaches 15 layers. The model can 
increase the SNR by 6.1dB at an 80% noise level.  

In the networks mentioned above, ReLU [10] is commonly 
applied as the activation function. This kind of activation 
function will lead to information loss in the network layers. 
Also, these networks do not have special designs for strong 
noise, leading to their poor performance under small SNR. 
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Fig. 1. The structure of the proposed network. 

To solve these problems, this paper designed a general deep 
learning model to denoise the ECG signals (APR-CNN). The 
backbone of the model is of encoder-decoder structure with a 
skip connection embedded. APReLU is used to replace ReLU 
as the activation function for better retainment of negative 
information. To optimize performance under strong noise, we 
introduced the attention mechanism by designing the Dual 
Attention Module (DAM). The network is trained and tested 
on the MIT-BIH dataset [11]. Real ECG signals and noise with 
different SNRs are used in the experiment. The results show 
that our network can improve the SNR by 9.56dB under -4dB 
noise. 

II. METHODOLOGY 

A. The Architecture of the proposed model 

Our network is a deep convolutional network of encoder-
decoder structure. APReLU is applied as the activation 
function. DAM is inserted behind each deconvolutional layer 
in the decoder. We introduced skip connections between the 
layers in the encoder and decoder. The overall structure of our 
model is presented in Fig. 1. 

The encoder-decoder structure will refine the features from 
input data in the encoder part and reconstruct and output the 
denoised signal in the decoder part. This model has four 
compression stages and four reconstruction stages, and 

multiple of each is two. In the encoder part, we set 16×1 as 

the kernel size for the first two layers. The experiment results 
in [12] show that selecting a large kernel size for the first few 
convolutional layers would significantly remove baseline drift 
noise. But to control the total size of our network and avoid 
over-fitting, the kernel size of the last two layers is set to three. 
In the decoder part, we obtained the best kernel size of the 
deconvolutional layers is 16 by experiments. To further 
improve reconstruction performance, we added the DAM at 
the back of each layer. This module can extract the inter-
channel and intra-channel attention and help reconstruct the 
signal. In the entire model, we used APReLU as an activation 
function, enhancing nonlinear transformation flexibility. In 
addition, skip connection is added and connects layers in the 
encoder to corresponding layers in the decoder directly. This 
extra path allows low-level features to be combined with high-
level features, which helps alleviate information loss in the 
decoder. 

B. Improve activation function with APReLU 

Typically, the activation function in each layer in a 
convolutional neural network is rectifier linear units (ReLU) 
[10]. Using such activation functions would damage the 

negative information contained in the input. Also, the 
transformations applied to each input will be identical, which 
limits the feature learning ability. 

Adaptive parametric ReLU (APReLU) [13] is developed 
for these problems. A typical APReLU is shown in Fig. 2. This 
module starts by separating the positive and negative parts of 
the input. Then the global average pooled value of the two 
parts is calculated and generates two 1-D vectors. Then the 
vectors are concatenated and propagated through a fully 
connected network, as shown in the graph. This yields a vector 
α containing the slope for the negative part of the input. Each 
slope corresponds to a channel and is different from the other. 
The output of this module is computed as: 

 max( ,0) min( ,0)y x x     (1) 

where x and y represent the input and output. Channel-wise 
multiplication is performed on the α and the negative part. 
A specific set of weights is produced for each input feature, 
so the nonlinear transformation is different. This module 
brought highly flexible transformation to the activation 
function and strengthened the denoising capability of our 
model. 
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Fig. 2. (a) The structure of APReLU. (b) The inner structure of the FCN. 

C. Dual Attention Module 

Attention mechanism plays an essential role in human 
perception. Several attempts are made in recent studies 
trying to introduce this mechanism into deep learning 
models [14, 15]. Inspired by the Squeeze-and-Excitation 
module proposed in [16], we designed the Dual Attention 
Module (DAM) for better ECG signal feature extraction 
capability. As shown in Fig. 3, the DAM consists of two 
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serially connected submodules, the channel attention 
module and the spatial attention module. The two 
submodules will exploit the inter-channel and inter-spatial 
relationship of features, respectively. The GMP and GAP 
values are calculated and fed into a fully connected network 
in the channel attention module. The two outputs are then 
added together, passed through the sigmoid function, and 
yield the channel attention. The CMP and CAP value is 
calculated in the spatial attention module, generating two 
2D feature maps. The maps are then concatenated by 
channel and propagate through a convolutional layer 
followed by a sigmoid function, which yields spatial 
attention. The output of the DAM is computed by: 
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where x and y represent DAM input and output, μ is an 
intermediate variable, 𝛼𝑐  and 𝛼𝑠  represent the channel 
attention and spatial attention. This module is a black-box 
model with one input and output and can be inserted into 
any part of the network. Also, the DAM significantly 
improved the performance without increasing network 
parameters because of the simple inner structure. 
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Fig. 3. (a) Architecture of the channel attention module. GMP and GAP mean 
global mean pooling and global average pooling. FCN is a two-layers fully 
connected network. (b) Architecture of the spatial attention module. CMP and 
CAP represent channel mean pooling and channel average pooling. 

III. EXPERIMENT & RESULTS 

A.  Dataset and Data Preparation 

Real ECG signals are used in the experiment, which came 
from MIT-BIH [11] Arrhythmia Database. This dataset 
contains 48 half-hours of two-channel ambulatory ECG 
recordings from 47 subjects, with a 360Hz sampling 
frequency. ECG signals from this dataset are the network 
target output. We manually added noise into it. Noise is real 
ECG noise from MIT-BIH Stress Test Database. Three kinds 
of noise are recorded in this dataset, containing baseline 
wander, muscle artifact, and electro motion artifact. 

The two datasets are divided into segments, each with 250 
data points, approximately one ECG cycle. Signal and noise 
are randomly selected from the two datasets. The signal 
strength of the noise is changed to satisfy the specified SNR. 
Then the signal and noise are added together as the input of the 
model. And original ECG signal is used as the target output. 

The generated data, all of which is normalized, contains 10000 
segments and is partitioned according to the rate of 8:1:1 to 
form the training, testing, and validating set.  

B.  Experimental Setup 

The networks in the experiment were developed based on 
the Pytorch framework. The model is trained for 80 epochs, 
with 256 samples per batch. The training algorithm used was 
stochastic gradient descent with adaptive momentum (Adam). 
The learning rate was set to 1e-3 initially and decreased to 1e-
4 after 40 epochs of training. During the procedure of testing, 
batch size was set to 200, and a total of 2000 samples were 
used for testing. 

We selected Mean Square Error (MSE) and Signal Noise 
Ratio (SNR) as the evaluation index. They are computed by: 
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where s represents the output signal from the network and x 
represents the target signal, which is the original noise-free 
ECG signal. MSE smaller is better, SNR greater is better. 

C.  Effectiveness of APReLU and DAM 

To verify that the two applied modules are effective in 
improving the denoising performance, we selected three 
models with similar structures for comparison. The backbone 
network of the four models is a deep convolutional neural 
network (DCNN) of encoder-decoder structure with skip 
connection. One model with APReLU introduced, one with 
DAM introduced, and one with no modules introduced. To 
compare the performance of the four models under different 
SNR, we trained and tested the four models on datasets with 
SNR equals -4dB, -2dB, 0dB, and 4dB. The SNR of data is 
kept the same in training and testing. The result is shown in 
TABLE I. 

TABLE I. Testing result of the four models. 

Model 
SNRdB MSE 

-4 -2 0 4 -4 -2 0 4 

DCNN 1.844 2.532 3.441 5.822 0.127 0.107 0.093 0.055 

DCNN+APReLU 4.755 5.501 7.132 9.548 0.127 0.112 0.096 0.056 

DCNN+DAM 4.380 5.227 6.745 9.211 0.065 0.060 0.054 0.031 

APR-CNN 5.564 5.966 7.449 9.841 0.061 0.057 0.035 0.027 

 

From TABLE I, a considerable advancement can be seen 
from the two networks with APReLU, or DAM introduced. 
The average improvement of the two networks is about 
3.15dB. The APReLU can better retain negative information, 
while DAM can improve feature learning ability by extracting 
attention. The test result of DCNN with APReLU is better than 
with DAM, proving the importance of negative information.  
By combining the two modules, our network outperforms 
other networks. The average improvement is about 3.79dB 
compared with DCNN. Especially under -4dB, the 
improvement is 3.72dB, showing the effectiveness of the 
designed structures. However, the improvement with weak 
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noise is not so distinct. This is because the network has 
restored most of the information in the signal, and further 
improvement could lead to overfitting. 

B. Comparative experiment 

For comparison purposes, a deep convolutional denoising 
autoencoder described in [5] and traditional denoising method 
- discrete wavelet transform (DWT) thresholding are tested 
along with our model. The convolutional autoencoder has 12 
layers, six layers of encoder, and six layers of decoder —each 
layer with kernel size equal to 16 and ReLU as activation. As 
for DWT, “db8” is selected as the wavelet base, and soft 
thresholding is applied. 

TABLE II. Comparative experiment results. 

Model 
SNR of the signal MSE 

-4 -2 0 4 -4 -2 0 4 

Autoencoder 2.322 2.845 3.341 4.965 0.128 0.115 0.100 0.073 

DWT -3.850 -1.505 0.426 4.227 0.464 0.302 0.182 0.074 

APR-CNN 5.564 5.966 7.449 9.841 0.061 0.057 0.035 0.027 

 
From TABLE II, one can observe that our network is better 

under all values of SNR. The autoencoder only has a little 
denoising effect and is less effective with weak noise. 
However, DWT thresholding is not working with the data used 
in this experiment. The two evaluation indexes are nearly 
unchanged after denoising. Fig. 4 presents a visual example of 
the denoising result. Noise is almost reduced after passing 
through the proposed model, except for slight imperfection at 
extreme points. Signals are smoothed after DWT thresholding, 
but SNR and mean squared error are not reduced. This is 
mainly because of the existence of drifting noise. On the 
contrary, the proposed network learned the characteristics of 
ECG signals and can handle this kind of noise with ultra-low 
frequency. 

 

Fig. 4. Visualization of the denoised signal. 

IV. CONCLUSION 

In this paper, a deep convolutional network for denoising 

ECG signals is proposed. We applied APReLU as the 

activation function, through which different sets of 

transformation are assigned to input and thus improved 

flexibility and performance of the network. DAM is designed 

in this paper to improve the denoising capability further. The 

DAM draws on attention mechanisms, applying feature 

refinement with channel attention and spatial attention 

modules. This module considerably improved the denoising 

capability while keeping the overhead small. The network 

architecture comparison experiment shows the effectiveness 

of the two introduced modules. And the proposed network 

yields 8dB improvement under -4dB noise, which is way 

more superior to other networks and traditional methods.   
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