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Abstract— Non-invasive means of monitoring mild cognitive
impairments (MCI) is recently gaining popularity. With the
advent of easy to use physiological sensors, there have been
an outburst of studies from the last decade which aim at
detecting a target’s mental health condition. However, not
many studies present the experience or insights gained from
carrying out such in-situ research work, particularly when
working with older adults. Such insights could not only assist
researchers in related areas when designing their study but
also avoid potential pitfalls. Clinical trials were conducted by
our organization in collaboration with the Geriatric Educa-
tional Research Institute, Singapore (GERI) and Singapore
Management University (SMU) for detecting mild cognitive
impairments in a geriatric population. Digitized versions of the
standard pen & paper psychological tests were used along with
gaze tracking technologies for MCI detection. Details of our
user study and it’s outcomes are discussed as well as a generic
approach of digitizing any given psychological test battery is
highlighted.

I. INTRODUCTION

There is a significant rise in the number of senior citizens
living independently, particularly in south east Asia. This has
led to an active research focus in the wellness and care of
ageing population [1]. By heavily instrumenting this specific
group with technology, we could possibly perform better
prediction and prevention of certain ailments. These include
postural stability, health parameters like heart rate, calories
burned, mild cognitive impairment (MCI) and so on.

In order to better understand the nuances in monitoring
and obtaining these wellness measures TCS Research in
collaboration with the Geriatric Educational Research Insti-
tute (GERI) and Singapore Management University(SMU)
initiated a trial study wherein an identified population would
be instrumented with smart devices and wearables to measure
a set of identified wellness parameters.

In this work, we share our experiences in the terms of
working with these participants and technology with a spe-
cific focus on our key objective of MCI detection, challenges
that we have faced during its implementation and capture the
lessons learned.

For detecting MCI, we deployed digitized variants of a
well-known pen and paper-based psychological test battery,
i.e. the Digit Symbol Substitution Test (DSST) [2]. This test
aims at assessing cognitive functions like visual scanning,
processing speed, working memory, cognitive processing and
motor response [3]. Analogous to this, the inverted version
of DSST i.e. the symbol digit substitution tests [4] are also
been employed as a standard test for cognitive analysis.

Though there exists several pen and paper versions
(pDSST) of the DSST [2], the need to have a digitized ver-
sion was mainly because of the following reasons. The only
two metrics of evaluation in pDSST are the total response
times and the total score whereas the trial-wise granularity
cannot be ascertained with pDSST. The inclusion of phys-
iological sensors like eye tracking, electroencephalogram
(EEG), etc is difficult in case of pDSST as the participants
are supposed to write down the answers which results in
muscle artifacts in the acquired signals. Also, since the mode
of inputs in the pen paper variants is in written form from the
participants, it comes with additional overload for the ageing
category. In our initial pen and paper trials with the clinical
participants, most of them were unable to take the pDSST as
the writing down of around 100 entries in tiny boxes seemed
to be a difficult task for many. This motivated us to have a
test which requires minimal input but maximizes the number
of output variables that would help us to get insights about
the mental health. Since, in the digitized version, for every
trial, we can either show a correct or an incorrect matched
pair of digits and symbols; we therefore have 2 inputs. We
further reduced it to one by restricting the inputs for only a
correct match.

These tests deals with harnessing of fluid cognition, which
therefore makes it a crucial marker of cognitive functions,
age related variations and decline of cognitive performances
[5]. Hence, this paper is mainly based on the explorations
on the digitized versions of DSST (dDSST) [6], [7] to
clinical trials. The variants of dDSST were used primarily
to diagnose the effects of age and the effects were found
to be dominant in gaze related features [6]. The study was
further extended for clinical trials and the experience gained
while handling the clinical participants are discussed in brief
in this paper.

II. USER STUDY SETUP

DSST is a well-known evaluation tool for assessing cog-
nitive functioning. The test involves a lookup table with
numbers from 1 through 9, each of which is paired with
a unique, easy-to-draw symbol such as ‘>’ ,‘V’, or ‘+’.
Below the lookup table are a series of numbers from 1
to 9 in random order, along with an empty box associated
with it. The participant is allowed to fill in those gaps with
corresponding symbols for every number. The time duration
is 90-120 seconds depending on the test version. The task
requires the participant to scan the corresponding number-
symbol entry provided in the lookup table and then write
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Fig. 1: Digitized DSST (dDSST) [6]. Three versions of this test are: (i)
Version 1: The lookup area (LUA) entries are fixed for all trials while the
query area (QA) entries changes randomly with trials. (ii) Version 2: The
entries in LUA and QA changes randomly with trials. (iii) Version 3: The
LU entries are fixed, the entries and the position of QA changes randomly
with trials.

the correct symbol in the empty box provided against each
number.

DSST assesses an assortment of cognitive functions. Good
performance in DSST requires intact attention, motor speed
and visio-perceptual functions, including scanning and ability
to write/draw (basic manual dexterity). Associative learning
can also affect the performance. For instance, if number-
symbol associations are rapidly learned following the first
few trials, then the performance speed improves as the
participant does not require to check the association for every
test entry. Consciously engaging oneself in this learning
strategy to improve the performance speed calls for the
executive functions of planning and strategising. Working
memory, another executive function, is likely required to
hold in mind the task rules and for the continual updating of
required digit-symbol pairs.

A schematic layout of our proposed digitized DSST test
is shown in Fig. 1. The layout includes the following: (i)
A lookup area (LUA) which is fixed at the top containing
the digit-symbol pairs. (ii) query digit-symbol pair appearing
at a specific position on the screen, termed as query area
(QA). (iii) Target LUA (TLUA) which is the region of LUA
having same digit as QA. The participant is supposed to
press the space bar button when the QA entries match with
that of the TLUA. If there is no match, the participant is
supposed to wait 3 seconds for the next trial. For every trial,
the participant checks the digit-symbol pair in the QA, search
for the same digit in the lookup region, match the digit-
symbol pairs of TLUA and QA and respond accordingly.

To get additional insights about the cognitive functions
of the participant, we used an infrared eye tracker with 60
Hz sampling rate from Gazepoint [8] to study their gaze
patterns. The eye tracker is placed below the computer
screen. As the matching step is at the core of the DSST,
gaze analysis is a good means of studying the behavior of
the participants. The usage of gaze tracking is beneficial in
understanding the implications of paired associations made
during recall. Completing a trial, i.e. matching a digit to
its symbol, without using the LUA is indicative of the use

of learned/memorized paired associations. In order to study
these effects, we selected different versions of the DSST. In
one of the versions, the lookup table entries change with
trials. This provides vital information which elucidates the
importance of paired associations. A typical experiment setup
using eye tracker and a chin rest is as shown in Fig. 2.

Fig. 2: Experimental setup

Each participant was required to perform the DSST-90
test (a pen & paper version) followed by three variants of
our computerized version of the DSST. The computerized
version of the test required participants to perform an initial
calibration step necessary for the eye tracker. Participants
were briefed on the study while a staff member demonstrated
how to press the spacebar when the symbols matched. The
participants where then administered the test. Below is a
description of the dDSST variants.

1) Version 1: This version is like the conventional pen
and paper DSST. Here, the entries in LUA are fixed for each
trial and the QA appears at the centre of the screen. Test-
specific parameters like response time per trial, total time,
score along with the metrics corresponding to gaze analysis
are recorded. This version aimed at studying the working
memory.

2) Version 2: This version is like version 1 except that
the entries in LUA changes pseudo-randomly with each trial.
The randomness in presenting the entries of LUA helped in
overcoming the possibilities of participants memorizing the
LUA entries.

3) Version 3: This version aims at studying the perfor-
mance characteristics when the QA location changes with
trials and the participant is expected to have better spa-
tial visuomotor coordination for accomplishing the task. It
also intends to assess the effects associated with positional
changes of the QA that might indicate one’s visual neglect.

The study involved a total of 35 participants (Female=20,
Male=15) with an average age of 71 years. Based on
diagnosis for MCI by a medical professional, the participants
were placed into two double blind groups (Group A=14,
Group B=21). However, out of these 35 participants only
28 (Group A=10, Group B=18) performed the computerized
DSST and 15 (Group A=6, Group B=9) completed the ini-
tial eye-tracker calibration step correctly. Institutional ethics
review board approvals were obtained (reference number:
2015/01076).
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TABLE I: User Study Participation Statistics

Total Number
of Participants

With Computerized
DSST Scores

With MCI Grouping
Information

With DSST-90
(pen & paper)
Scores

With Eye Tracking
Data (calibrated)

With Eye Tracking
Data (uncalibrated)

35 29 28 35 17 18

Fig. 3: Correlations in the test metrics

III. RESULTS AND DISCUSSIONS

We initially formulated the following hypotheses. Null
Hypothesis H0: Participants diagnosed with MCI will not
exhibit significant performance degradation (test time, test
score) when subjected to the dDSST. Null Hypothesis H1:
Participants diagnosed with MCI will not exhibit any signif-
icant patterns in eye tracking features when subjected to the
dDSST.

Fig. 3 shows the inter-correlations of the test metrics
between the pDSST and the 3 variants of dDSST. It is to
be noted that the correlation between the pDSST score and
the version 1 of dDSST is quite high. This is obvious as the
base version of dDSST, i.e. version 1 is similar to pDSST
when compared to the other two versions.

However, this score metric of dDSST is not statistically
significant in distinguishing the two participant categories
under test. This can be attributed to the several unforeseen
variables corresponding to MCI which cannot be easily cap-
tured using the conventional features. We therefore explored
other features like the key hold time, gaze related features
like gaze durations in TLUA, LUA and QA mentioned in
[6]. In addition to this, we further explored the blink related
features like average blink counts, blink rate variability
related time domain parameters [9] obtained by considering
the series formed from inter blink gaps. Table II shows the
results by considering the top performing features. Note that
as the main objective of this paper is to summarize the
experiences of the clinical trial, we don’t discuss the results
in finer details.

TABLE II: Results of the User Study. The only non-significant difference
(using student’s t-test with p = 0.05) is between the DSST-90 Group A and
Group B results. All other differences are significant at p = 0.05.

Group A Group B p Value
DSST-90 (mean score) 34.5 31.7 0.2

dDSST (mean time (s) ) 130.6 134.1 0.04
Blink Rate Variability
(mean time between blinks) 1.3 0.6 0.02

As mentioned earlier in Section II the participants were
diagnosed by a medical professional for MCI and placed
into two double blind groups. We performed a student’s t-
test across the multiple variants between the two groups.
While no difference was observed between the groups for
the pen and paper version and it’s equivalent computerized
version, we did observe a significant difference in the time
taken to perform the dDSST test as well a difference in the
skewedness of the blink rate variability.

While the small sample size prevents us from drawing
any conclusion, the observations do encourage us to explore
this domain further. The study also provided us insights to
improve our protocol which we talk about in the next section.

IV. GUIDELINES/FUTURE ROADMAP

In particular to MCI detection using dDSST, this exercise
helped us gain the following insights based on participant
feedback and our own data observation:

(i) Eye-tracker Calibration: Systematic error, essentially
a static offset from the gazed target location, is a common
error in most eye-trackers. Hence, the calibration is essential
to eliminate this error. In our work, several participants failed
to perform this calibration step correctly rendering the eye
tracking data unusable. We therefore need to investigate
methods for reduction/removal of this eye calibration step.

Next Steps: The current dDSST layout is inspired from the
traditional pen and paper test. This layout is concentrated at
the centre of the screen and hence requires more precise
tracking. We are therefore investigating a layout that utilizes
the entire screen without impacting the test outcome. Fig.
4 shows the new design with a sample simulated gaze map
for a given trial in the DSST. For an ideal search task, the
scanpath follows a trail from the QA to the target LUA and
back to the QA. Quick results have shown that even with
a systematic error above 2 degrees, owing to the sparsely
placed entities, the gazed entity can be predicted based on
the nearest neighbor approach [10]. This design also seems
suitable for use with a webcamera for eye-tracking - which
we are exploring in order to avoid use of the chin-rest.

Fig. 4: Sparse designs for DSST to solve the issues with eye tracking
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(ii) Elimination of the chin rest: Eye tracking studies
typically require chin rests in order to reduce any errors
due to head movements during the data collection exercise
(Fig. 2). In our study, feedback received clearly indicated
discomfort in prolonged usage of the chin rest and hence
opens up a research thread to explore methods of eliminating
it.

Next Steps: We are currently exploring techniques to
perform pose independent (and distance independent) eye
tracking using a webcamera. This will hopefully not only
eliminate the need for a chin-rest but will also provide a
scalable solution as a dedicated eye-tracking device will no
longer be needed. As a first step we have implemented a gaze
estimation algorithm using deep learning techniques utilizing
the RT-GENE dataset [11]. The gaze information is converted
to screen coordinates using a regression based model giving
us close to 100% accuracy for a 3 × 3 grid with free head
movement within a head box size, Fig. 5.

Fig. 5: Illustration of the in-house developed 3×3 grid-based eyetracker

(iii) Duration of the test: Participants also provided
feedback with regards to the duration of the study. While
this study required participants to perform the dDSST over
multiple variants (which will be reduced to one in a normal
scenario) we are investigating options of decreasing the test
duration without compromising on the outcome.

Next Steps: In our current dDSST version, participants are
evaluated over 50 trials. This is in contrast to the pen and
paper version where the test is time bound. We are exploring
how to optimize these parameters, number of trials and time,
to find the sweet spot between the two.

(iv) Incentives: Incentives plays a very important role in
acquiring good quality data from the test participants [12].
Non clinical data collection to be specific, requires proper
incentives to be given to the participants in order to keep
them well motivated during the experiment, lack of which
leads them to lose their interest during the task. In case of
clinical trials, the participants, however, are still motivated
as they consider it to be a part of their medication process.
However, such clarifications need to be made well in advance
and proper written consents have to be taken along with IRB
approvals.

V. CONCLUSIONS

For any diagnostic type of studies which basically involves
2 class classification (healthy and unhealthy), there exists
two sorts of test batteries, viz., physio and mental oriented
tests. In case of MCI, the effects are manifested in both

the above test batteries. There are standard conventional pen
and paper tests which have been used so far. However, as
seen in the results, an additional sensor aids in providing
multiple variables to test the effect, which seems to be
beneficial over the conventional test metrics. Test batteries
usually come with a norm of values created by considering
a large sample of participants from various age groups,
demographies, educational backgrounds, gender and so on.
Hence, any study which target the digitization of such
batteries, should undergo the same set of exercise and create
suitable norms. If any physiological sensing is involved, the
norms should also contain the metrics corresponding to the
dominant features obtained from the sensors. This comes
with additional overhead of sensor calibration, sensor data
preprocessing and feature engineering.

VI. ACKNOWLEDGEMENTS

We would like to thank the Geriatric Education and
Research Institute (GERI), Singapore and the School of
Information Systems, Singapore Management University,
Singapore for facilitating and assisting us in various stages
of this work.

REFERENCES

[1] Hoimonty Mazumder, Md Mahbub Hossain, and Anupom Das, “Geri-
atric care during public health emergencies: lessons learned from novel
corona virus disease (covid-19) pandemic,” Journal of Gerontological
Social Work, vol. 63, no. 4, pp. 257–258, 2020.

[2] Shobini L Rao, DK Subbakrishna, and K Gopukumar, NIMHANS
neuropsychology battery-2004, manual, National Institute of Mental
Health and Neurosciences, 2004.

[3] Stephen Joy, Edith Kaplan, and Deborah Fein, “Speed and memory
in the wais-iii digit symbol—coding subtest across the adult lifespan,”
Archives of Clinical Neuropsychology, vol. 19, no. 6, pp. 759–767,
2004.

[4] Claudia Cornelis, Livia Joanna De Picker, Wouter Hulstijn, Glenn
Dumont, Maarten Timmers, Luc Janssens, Bernard GC Sabbe, and
Manuel Morrens, “Preserved learning during the symbol digit substi-
tution test in patients with schizophrenia, age-matched controls and
elderly,” Frontiers in psychiatry, vol. 5, pp. 189, 2015.

[5] Timothy A Salthouse, “The processing-speed theory of adult age
differences in cognition.,” Psychological review, vol. 103, no. 3, pp.
403, 1996.

[6] Chatterjee et al, “Evaluating age-related variations of gaze behavior
for a novel digitized-digit symbol substitution test,” Journal of Eye
Movement Research, vol. 12, no. 1, 2019.

[7] Chatterjee et al, “Eye movements-an early marker of cognitive
dysfunctions,” in 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,
2018, pp. 4012–4016.

[8] “Gazepoint,” https://www.gazept.com, [Online; accessed 27-
April-2021].

[9] Gavas et al, “Blink rate variability: a marker of sustained attention
during a visual task,” in Adjunct Proceedings of the 2020 ACM
International Joint Conference on Pervasive and Ubiquitous Comput-
ing and Proceedings of the 2020 ACM International Symposium on
Wearable Computers, 2020, pp. 450–455.

[10] Yunfeng Zhang and Anthony J Hornof, “Mode-of-disparities error
correction of eye-tracking data,” Behavior research methods, vol. 43,
no. 3, pp. 834–842, 2011.

[11] Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris, “RT-GENE:
Real-Time Eye Gaze Estimation in Natural Environments,” Oct. 2018,
This work was supported in part by the Samsung Global Research
Outreach program, and in part by the EU Horizon 2020 Project PAL
(643783-RIA).

[12] Georg-Christoph Haas, Frauke Kreuter, Florian Keusch, Mark Trapp-
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