
 

Abstract— Human induced pluripotent stem cells (hiPSCs) 

can differentiate into three germ layer cells, i.e. ectoderm, 

mesoderm and endoderm, on micropatterned chips in highly 

synchronous and reproducible manners. The cells are confined 

within the chip, expanding two-dimensionally as almost in the 

form of monolayer, thus to be ideal for serving quantitative 

analysis of their pluripotency. We present a new U-Net (MP-

UNet) structure for cell segmentation of early spatial patterning 

of hiPSCs on micropattern chips using Hoechst fluorescence 

images. In this structure, the encoding/decoding layers can be 

dynamically adjusted to extract sufficient image features and 

be flexible to image sizes. Dice and weight loss functions are 

designed to identify slight difference in low signal-to-noise ratio, 

high boundary-to-area ratio and compacted cell images. 

Several sizes of Hoechst images were tested to show MP-UNet 

can achieve high accuracy in cell regions and number counting 

for various sizes of micropattern chips, thus to be excellent 

quantitative tool for early spatial patterning of hiPSCs. 

 

I. INTRODUCTION 

Human induced pluripotent stem cells (hiPSCs) represent an 

ideal source for patient specific cell-based regenerative 

medicine. For the clinical use of hiPSCs [1, 2], quality control 

(QC) of the cell lines will be extremely important. Also, 

pluripotency of the hiPSCs should be evaluated before use. 

Embryoid body formation combined with expression analysis 

has been used for pluripotency test [3], assessing the potential 

of three germ layers (ectoderm, mesoderm and endoderm and 

their descendants) formation in vitro. However, it requires 

relatively long time and the results are not reproducible and 

quantitative. On the other hand, the micropattern 

differentiation system can offer rapid, reproducible and 

quantitative method for pluripotency testing. It has been 

shown that human embryonic stem cells (hESCs) can 

generate embryonic spatial patterns, resemblance to the one 

in the gastrulating human embryos consist of three germ  
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layers [4, 5]. Cells are confined within the chip, expanding 

two-dimensionally as almost in the form of monolayer, which 

are ideal for quantitative imaging analysis. The hiPSCs were 

also confirmed self-organizing on the chips with highly 

reproducible and synchronous manners [6, 7]. 

 Pluripotent stem cells differentiated on the micropattern 

chips were stained with antibodies against lineage markers 

such as SOX2, BRACHYURY, SOX17, and CDX2 for 

ectoderm, mesoderm, endoderm, and extra-embryonic 

trophoblast, respectively. DAPI, the nuclei staining reagent, 

is frequently used to stain cell nuclei for counting number of 

cells. However, DAPI segmented cell regions were usually 

smaller than true cell regions and DAPI stain is rather toxic, 

and not suitable for live cell imaging. In this study, we instead 

use Hoechst staining for cell segmentation. However, early 

spatial patterning of hiPSCs on Hoechst fluorescence images 

usually shows compacted, low signal-to-noise and boundary-

to-area ratios. Current image processing and machine 

learning methods, such as U-Net [8, 9] that was considered an 

excellent in object segmentation, cannot accurately segment 

for hiPSCs on Hoechst fluorescence images.   

In this paper, we propose a new U-Net (MP-UNet) 

structure for cell segmentation of early spatial patterning of 

hiPSCs on micropatterns using the Hoechst microscopy 

images. Encoding/decoding layer stacks have been adjusted 

to dynamically accommodate various sizes of images and 

extract more image features. Dice and weight loss functions 

are designed to identify slight difference in low signal-to-

noise ratio, high boundary-to-area ratio and compacted cell 

images. Various sizes of Hoechst fluorescence images were 

tested and high classification accuracies in measuring cell 

regions and counting the cell number (both better than 87%) 

were achieved. Thus, the new U-Net structure is effective in 

segmenting cells and flexible enough to handle various sizes 

of micropattern chips. The segmented cells on the Hoechst 

images are then mapped onto SOX2 and BRACHYURY 

fluorescence images to show the SOX2 or BRACHYURY 

positive cells with various levels of fluorescence intensities.  

 

II. MATERIALS AND METHOD 

A. Cell culture for early spatial patterning of hiPSCs  

Human iPS cell line used in this study is 201B7 (HPS0063) 
and was obtained from RIKEN BioResource Research Center. 
The iPS cells were cultured and induced to differentiate on 
the micropattern chip (CYTOO chips, ArenaA 500 μm, 1000 
μm, CYTOO Inc. France.) as described in [4]. 
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(a)                            (b)                            (c)                           (d)  

 Figure 1. An example of multi-channel fluorescence microscopy images for 
hiPS cells in early spatial patterning on a micropattern chip: (a) Bright-field, 
(b) Hoechst, (c) SOX2, and (d) BRACHYURY. 

 

B. Imaging condition. 

Microscopy images of early spatial patterning of hiPSCs 
were taken by Leica DMI6000B with HC PL FLUOTAR 
camera. One set of microscopy images in four channels were 
acquired as shown in Fig. 1. Fig. 1(a) was the bright-field 
image.  Fig. 1(b), 1(c) and 1(d) show fluorescence images of 
Hoechst, SOX2 and BRACHYURY, respectively, with a 
pixel resolution of 0.461×0.461μm2, with resolution of 2560 

 2560 for size of 1000 μm and  1280  1280 for 500 μm on 
the micropatterns. 

 

B. Methods. 

 

1) MP-UNet network architecture 

 

Figure 1 shows the proposed MP-UNet architecture that 

consists of two symmetric parts for extracting cell features: 

down-sampling and up-sampling parts. Each part consists of 

variable numbers of layer stacks. Each stack is composed by 

two layers of convolution and ReLu, together with one 

Maxpooling layer. These stacks in the down-sampling refines 

the cell features with particular dimensions to generate 

corresponding feature maps. Meanwhile, the up-sampling 

processes the feature map to generate the segmented cell 

image through the symmetric layer stacks.  

The input image including the channel are represented 

as (h, w, c). h and w indicate the input image size that can be 

flexible. c the channel number, although can be flexible in our 

system, currently is 1 to indicate one fluorescence color is 

processed. The input (x, y, C) of a specific layer stack in 

down-sampling is calculated by Eq. 1, where M the number 

of down-sampling/up-sampling layer stacks, S the stride of 

Maxpooling layer to the convolution and ReLu layers  

(𝑥, 𝑦, 𝐶) = (
ℎ

𝑆𝑖−1 ,
𝑤

𝑆𝑖−1 , 2𝐹+𝑖−1),                                       (1) 

where i indicates the number (from 1 to M) of the layer stack, 
F is constant for deciding channels of the layer stacks. F, M, 
and S are currently set as 5, 6 and 2 obtained during the MP-
UNet training according our experiences. Meanwhile, the 
input of a specific layer stack in up-sampling is symmetric to 
the ones in the down-sampling as shown in Fig. 1.  

 

 

 
 

Figure 2. MP-UNet architecture. 

 

2) Loss function for MP-UNet 

During training, the MP-Loss function, MPL(X, Y) is 

proposed to improve segmenting accuracy for compacted or 

contacted cells hiPSCs of early spatial patterning on 

micropatterns. MPL(X, Y) is linear combination of a weight 

loss function W(X, Y) and a dice loss function D(X, Y) as Eq. 

2.  and are currently set as 1. X=[𝑋1, 𝑋2, … . , 𝑋𝑥𝑦−1, 𝑋𝑥𝑦] 

indicates the pixels of the image predicted by MP-UNet. Y 

=[𝑌1, 𝑌2, … . , 𝑌𝑥𝑦−1, 𝑌𝑥𝑦] indicates pixels of the ground truth 

image. W(X, Y), calculated based on cross-entropy function as 

shown in Eq. 3 and  Eq. 4, is used to emphasize some 

categories. rk in Eq. 4 indicates the weights of k categories, 

and is used to determine the category importance. For 

example, the highest value is at the cell boundary. D(X, Y) can 

reveal the particular category with larger numbers and reduce 

the loss value.  

MPL(𝑋, 𝑌) = 𝛼 × 𝑊(𝑋, 𝑌) + 𝛽 × 𝐷(𝑋, 𝑌)                      (2) 

𝑊(𝑋, 𝑌) =
1

𝑁
∑ 𝐸(𝑋𝑗, 𝑌𝑗) ∗ 𝑟𝑘

𝑁
𝑗=1                                            (3) 

𝐸(𝑋𝑗 , 𝑌𝑗) = −𝑌𝑗 × log 𝑋𝑗                                                          (4) 

𝐷(𝑋, 𝑌) = 1 − 2|𝑋 ∩ 𝑌| (|𝑋| + |𝑌⁄ |)                                   (5) 
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Figure 3.  Quantitative analysis of early differentiation stage of hiPSCs 

cultured on 1000m micropattern chip 

 

 
Figure 4.  Quantitative analysis of early differentiation stage of hiPSCs 

cultured on 500m micropattern chip. 

 

III. RESULTS AND DISCUSSION 

The MP-UNet was built on a PC with Intel Core i9-9900K 

3.60 GHz, 64GB Ram, graphics card of Asus Dual-RTX2080 

Ti (11G), and was developed using TensorFlow framework, 

and Python programming language. Both the convention 

UNET or proposed MP-UNet were trained two times. First, 

1200 (256  256 pixels) clipped from mouse ESC nucleus 

confocal fluorescence images [10] were used to learn the cells 

with clear image patterns and mild contact. Then, 240 (256  

256) templates clipped from the Hoechst images were used to 

further learn the cell features on the Hoechst images. Such 

size of templates was tested as optimal to learn the cell 

features on the Hoechst images. The pre-training with another 

type of cell images were frequently used in machine learning 

for improving accuracies [11]. 

A. Quantitative analysis of early differentiation stage of 

hiPSCs cultured on 1000m micropattern chip 

 

Figure 3 shown an example of MP-UNet cell 

segmentation for spatial patterning of hiPSCs on a 1000m 

micropattern chip. Fig. 3(a) shows U-net segmented cells on 

the micropattern chip by processing a Hoechst fluorescence 

microscopy image as shown in Fig. 1(b). If a Hoechst positive 

cell corresponds to the ectoderm or mesoderm or others is 

determined by first mapping the segmented region of this cell 

to both the SOX2 and BRACHYURY fluorescence images as 

shown in Fig. 1 (c) and Fig. 1(d). Then, this cell is classified 

as SOX2 or BRACHYURY positive by comparing the 

intensities of the mapped region on the SOX2 and 

BRACHYURY images. That means if it is both SOX2 and 

BRACHYURY positive, it is assigned to the one with higher 

intensity. When the cell is both SOX2 and BRACHYURY 

negative, it is assigned as the Hoechst positive. We also 

implemented another MP- UNet segmentation for the bright-

filed image and found some Hoechst-negative (gray) cells 

exiting near the outmost part of the micropattern chip. As the 

result, a cell is assigned as either of the four colors: SOX2 

fluorescence (green), BRACHYURY fluorescence (red), and 

Hoechst fluorescence (blue), and without any fluorescence 

(gray) as shown in Fig. 3(a). A cell on the SOX2 or 

BRACHYURY image is further classified as any of four 

levels according to its intensity on the SOX2 or 

BRACHYURY image as shown in Fig. 3 (b) and 3(c) that 

may reveal the cell as some ectoderm or mesoderm subtype. 

Fig. 3(d) shows the cell densities of respective types of 

segmented cells on the micropattern chip. SOX2 positive 

cells are mainly distributed inside the 300m from the center. 

The BRACHYURY positive cells mainly distributed 

between 400m and 500m from the center. The cells of 

Hoechst positive are also distributed at the outer part of the 

micropattern chip. However, some Hoechst negative (very 

weak fluorescence responses) cells were also located at the 

outer part. A SOX2 or BRACHYURY cell is further 

classified is any of four subtypes depending on its intensity.  

Fig. 3(e) and 3(f) shows the SOX2 and BRACHYURY 

positive cell numbers as in Fig. 3(d) are further divided into 

four respective subtypes depending on their intensities in the 

SOX2 and BRACHYURY fluorescence images.  
 

B. Quantitative analysis of early differentiation stage of 

hiPSCs cultured on 500m micropattern chip 

Figure 4 shows the example of cell segmentation for 

spatial patterning of hiPSCs on a 500m micropattern chip. 

Fig. 4 (a), (b) and (c) are the original Hoechst, SOX2, and 

BRACHYURY fluorescence images, respectively. Fig. 4(d) 

shows the MP-UNet segmented hiPSCs on the chip by 

processing the Hoechst image as shown in Fig. 4 (a). A 

segmented cell is assigned as either of the SOX2 (green), 

BRACHYURY (red), and Hoechst fluorescence (blue). Other 

(gray) cells are located on the outmost part of the micropattern 

chip obtained from another MP-UNet segmentation by 

processing their bright-filed image ((Fig. 4(a)). Figure 4 (e) 
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and 4(f) show the segmented cells assigned by SOX2 or 

BRACHYURY fluorescence, where each cell is assigned as 

any of four levels by its intensity in Fig. 4(b) or Fig. 4(c).  

Fig. 4(g) shows the cell density on the micropattern chip. 

SOX2 positive cells are mainly distributed inside the 150 m 
from the center. The BRACHYURY positive cells mainly 

distributed between 150m and 250m from the center. The 
cells with SOX2 and BRACHYURY positive negative but 
Hoechst positive are distributed at the outer part of the 
micropattern chip; meanwhile, some Hoechst negative cells 
(gray) appear at the outer part. Fig. 4(h) and 4(i) shows the 
SOX2 and BRACHYURY positive cell numbers as in Fig. 
4(g) are further divided into four subtypes depending on their 
intensities in the original fluorescence images. 

 

C. The accuracy evaluation for segmented cell numbers 

and regions 

A Hoechst image (2560  2560), and its four, 16, 25 and 

64 divisions were used as input images to show the flexibility 

of the trained MP-UNet. The classified cell numbers for these 

images are 6098, 6011, 6015, 6027, and 6061, respectively. 

Comparing to the manual ground-truth number 6915, the 

accuracy (over 87%) are almost the same for all the image 

sizes, indicating the trained MP-UNet can achieve the almost 

same accuracy for any image size, e.g., 1000, 500 and 250 μm 

of micropatterns. Conversely, the classified numbers by the 

trained conventional U-net were 532, 2016, 4517, 5196, and 

4285, respectively. The suitable input image size is 512  512 

(25 divisions) where the accuracy achieved 75% that is 

apparently worse than by MP-UNet. Fig. 5(a) shows the 

overlap of the segmented cells by MP-UNet with the whole 

image. Fig. 5(a) shows the overlap of the segmented cells by 

conventional U-Net with the 25 divisions of the whole image. 

Fig. 5(c) and 5(e) show a zoom-in of one ROI on the Fig. 5(a) 

and Fig. 5(b), respectively. Fig. 5(d) shows the same ROI 

zoom-in but by MP-UNet with the 25 divisions. The white, 

blue and red regions in these figures are TP (True Positive), 

FN (False Negative) and FP (False Positive). The region 

accuracy achieved about 90% for all the figures. But, other 

sizes by conventional U-net achieved worse accuracy, e.g., 

73% for the whole image. The cell connections between 

divided images classified by MP-Unet (Fig. 5(d)) are also 

apparently better than by conventional U-Net (Fig. 5(e)) that 

show MP-Unet can classify out more accurate cell shapes. 
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