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Abstract— The study of electroencephalography (EEG) data
for cognitive load analysis plays an important role in identifica-
tion of stress-inducing tasks. This can be useful in applications
such as optimal work allocation, increasing efficiency in the
workplace and ensuring safety in difficult work environments.
In order for such systems to be realistically deployable, easy
acquisition and processing of the data on a wearable device
is imperative. Current techniques primarily perform offline
processing to analyse a multi-channel EEG to make a post facto
assessment. This work focusses on building a new deep learn-
ing architecture that performs a single feature based spatio-
temporal analysis of EEG data. This is achieved by creating a
brain topographic map based on a single feature followed by
spatio-temporal analysis using the developed network architec-
ture. Data from two cognitive load experiments on the Physionet
EEGMAT dataset were used to validate the performance. The
network achieves an accuracy of 98.3% which is better than
similar state-of-the-art approaches. Moreover, the proposed
approach facilitates analysis of the spatial propagation of a
signal, which is not possible through conventional EEG signal
representations.

I. INTRODUCTION

Memory in the human brain can be functionally segmented
into two parts according to cognitive load theory — working
memory and long-term memory [1]. Cognitive load is used
as an important criterion for analyzing proficiency in various
tasks like driving [2] and learning [3]. The load on the
working memory while doing various mental tasks is the
cognitive load on the person. It is a key attribute for deter-
mining cognitive abilities such as problem-solving and stress-
endurance. Objective characterisation of the cognitive load
in near real-time can help in preventing burnout, prolonged
stress and ensuring safety in high mental load working
environments.

EEG has been used to capture the activity of the brain for
a while. The data is collected in a multi-channel setup, where
23 channel data is collected from the scalp. This can help in
determining the cognitive load and the state of a person [4].
The analysis of brain EEG based cognitive load analysis is
used in diverse applications starting from designing brain-
human computer interfaces (BCI/HCI) to designing more
retentive advertisements [5]. These methods use multiple
channels to calculate time and frequency domain features
for determining the cognitive state. Hence, the application
of these methods are often restricted to post facto analysis
of the data rather than continuous assessment of the cognitive
state.

An EEG signal can be represented more intuitively in
the two-dimensional spatio-temporal space using topographic
maps. A topographic mapping establishes the relation be-
tween the multi-channel EEG signal and the spatial and tem-
poral dimensions enabling a visualization of the activation
in different regions of the brain. This representation helps
in localizing activated regions and further assists in studying
the responses that are evoked by different types of tasks.
This work uses a topographic map as the representation for
automatic assessment. The key advantage of this approach
is the possibility of achieving the objective of cognitive load
classification using a single or very few features with an
acceptable level of accuracy. In this work, a deep learning
approach for cognitive load assessment is proposed, with the
following key contributions: (a) an approach for analysis
of spatial propagation of brain signals is proposed, (b)
Topographic maps (topomaps) are generated using entropy
and PSD, and are converted into a continuous video of spatio-
temporal maps, (c) a new deep learning architecture called
EEG-TopoNet, based on spatio-temporal architecture [6] is
proposed for EEG topomap analysis, (d) the developed
architecture is validated using two levels of cognitive load
assessment tasks, first to identify if the subject is at rest or
active state and the second is to classify the subject based
on count quality in the given arithmetic task.

II. RELATED WORKS

EEG signal analysis has been explored for various tasks
ranging from mental workload estimation to seizure detection
and emotion recognition [7]. Many classical machine learn-
ing techniques have been applied to EEG data for mental
load analysis. This follows three main steps: removal of
signal noise, extraction of hand-crafted features, followed
by classification into different levels of load. Shivabalan
et al. [8] used a novel machine learning classifier called
the SMORASO-DT, which combines SMOte, Random forest
and lASso- Decision Tree to separate subjects based on their
count quality. Fatimah et al. [9] used quadratic discriminant
classifier for the same task. In [10], subjects are assessed
for mental cognitive load mismatching (CLMM) state (bad
performer) or cognitive load matching (CLM) state (good
performer), by analyzing multi-modal sensor data from both
brain (EEG) and cardiac activities (HRV). An RBF-kernel
SVM classifier was used in Kim et al. [11] with eleven fea-
tures to segregate the quality of arithmetic tasks performed
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Fig. 1: Proposed framework using a) PSD-based topographic maps; b) entropy topographic maps. Topographic plots for a
subject generated using c) PSD of baseline task (top) and PSD of mental calculation task (bottom), d) entropy of baseline
task (top) and entropy of mental calculation task (bottom)

by the subjects. In the last few years the application of deep
learning architectures has gained attention. Here deep learn-
ing techniques are combined with EEG topographic maps to
understand the brain functionality with respect to different
tasks. Deep recurrent convolutional networks are utilized
in [12], [13] to learn spatial, spectral and temporal features
from topographic representations for cognitive load classifi-
cation. In these topomap-based approaches, the spatial and
temporal features are learned sequentially by having either
spatial or spatial-spectral layers followed by temporal layers
in the network. This work investigates the three-dimensional
convolution and long short-term memory (LSTM) networks
that simultaneously look at the spatio-temporal and spectral
planes to extract meaningful features for mental load classi-
fication. The use of feature based spatio-temporal topomaps
followed by deep learning is shown to produce reliable
accuracy and performance in near real-time.

III. MATERIALS AND METHODS

A. Dataset description

This work uses the publicly available EEG dataset for
Mental Arithmetic Tasks (EEGMAT) from Physionet. This
dataset contains EEG recordings of subjects before and
during the performance of a mental arithmetic task [14]. The
experiment was conducted in a controlled environment with
thirty-six subjects who were given an arithmetic task. The
task was carried out for four minutes with EEG and ECG
data of every subject collected during the experiment. The
subjects were separated into two categories — good and bad
— based on the performance of the task. No further post-
processing was performed on the signal data.

B. Topographic map generation

For the generation of topographic maps from the EEG
signals, MNE toolbox was used [15]. Two sets of topographic
maps are generated from the EEGMAT dataset, as shown in
Figure 1(c) and Figure 1(d), one using a power spectral den-
sity (PSD) representation, and the second based on entropy.

For the first set, a method similar to that used by Zhang
et al. [12] is employed. The topographic maps are computed
by decomposing the downsampled 21-channel EEG data into
frequency bands of 1 Hz each, from 1Hz to 40Hz and then
computing their power spectral density using Morlet wavelet
transform. The topographic maps are generated at an interval
of 0.5 seconds for the total duration of 60 seconds resulting
in 120 frames for each subject and for each class (baseline
and mental calculation task). Each frame consists of forty
topographic maps corresponding to the forty frequencies,
stacked on top of each other. This results in a dimension of
[120, 232, 221, 40]. The frames are resized to (224, 224), and
the last frame is dropped since it is identified by the toolbox
as being corrupt. For the second set of topographic maps,
the sample entropy [16] is computed for each one-second
interval of the downsampled EEG data, thereby generating
60 frames for each subject and each activity, and spatially
resized to (224, 224). The PSD-based topographic maps are
represented in grayscale with dimension [119, 224, 224, 40],
while the entropy based topographic maps are represented in
the RGB space with dimension [60, 224, 224, 3]. These are
given as input to the proposed spatio-temporal EEG network
(EEG-TopoNet) explained in the subsequent sections.

C. Spatio-temporal EEG network (EEG-TopoNet)

The topographic maps capture brain activity across time,
providing a visualization of activated regions during various
tasks. This activity patterns can be extracted using a spatio-
temporal network, similar to [6] with appropriate modifica-
tions to handle EEG topomaps instead of videos. Let Tpsd

and Tent represent the generated PSD topomaps with dimen-
sion [119, 224, 224, 40] and the generated entropy topomaps
with dimension [60, 224, 224, 3], respectively. These are fed
as input to the proposed spatio-temporal deep network,
referred to as EEG-TopoNet. Let T denote a generic topomap
representation with dimensions [30, 224, 224, 3]. The feature
extraction with T of a fixed dimension is described first,
followed by the additional steps for Tpsd and Tent.
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Feature Extraction: The core of the architecture is
the feature extractor as shown in Figure 2, that forms the
backbone for spatio-temporal feature representation. The
goal is to extract descriptive features that capture the brain
activation patterns over different time durations. This uses
3D convolution layers and long short-term memory (LSTM)
layers as building blocks, and is inspired by the hierarchical
arrangement in [6]. The architecture uses 3D pre-trained
models to compute short-term spatio-temporal features, and
these are aggregated using attention pooling and 2D convL-
STM layers. As explained above, T is the input to the feature
extractor. T is split into three parts across first dimension,
such that Ti, i = 1, 2, 3, has dimension [10, 224, 224, 3].
I3D features, denoted by T i3d

i , are computed for Ti by
tapping the ’mixed-5c’ layer output in the popular I3D
architecture [17]. The three outputs T i3d

i , i = 1, 2, 3, each
of dimension [14, 14, 832], are processed further to gather
long-term variations. This is achieved by first adding a 2D
convLSTM layer with 64 filters. This takes each T i3d

i as
input at every timestep. The intermediate cell states Cl1

i ,
i = 1, 2, 3 and hidden states H l1

i , i = 1, 2, 3, are tapped
from this layer and aggregated using attention-based pooling.
Here, I3D features are used as context to compute two
attention weighted feature sets Cl1

att and H l1
att. These are

finally combined using a second 2D convLSTM layer with 64
filters, to calculate the comprehensive features H l2 from the
hidden state. The I3D features of T2 are concatenated to this
to form the final set of features FT of dimension [14, 14, 896]
for a topomap representation T . As the generated topomaps
have different number of frames as the input data, they
are pre-processed, as explained below, before being sent to
the feature extractor. This will keep the core EEG-TopoNet
architecture intact and enables a variety of topomaps as
inputs.

Fig. 2: The backbone network used for feature extraction
from the topographic maps

Classification using PSD topomaps: The block diagram
for PSD topomap classification is shown in Figure 1(a). Pre-
processing block is an auto-encoder consisting of two 3D
convolution layers with 32 filters and 3 filters respectively
followed by two de-convolution layers to reconstruct the
input. This is trained with Tpsd as input to compress the
data and remove redundancies. The trained encoder is used
for further training. The encoder outputs a compressed rep-
resentation Epsd of dimension [119, 224, 224, 3]. The feature
extractor in the proposed network takes a fixed size of 30

frames as input. Therefore, Epsd is divided into four sets
of 30 frames each Ei

psd, i = 1, 2, 3, 4, and provided to the
feature extraction sequentially. For the last set of 29 frames,
a blank frame is appended. The cell states and hidden states
of the convLSTM layers are carried over from one set to
the next and the final LSTM layer output is extracted for
each set. The extracted feature maps F i

psd, i = 1, 2, 3, 4
are concatenated and flattened using global average pooling
and passed through a 3D convolution layer with sigmoid
activation for binary classification.

Classification using entropy topomaps: Figure1(b)
shows the steps for classification using entropy topomaps.
The entropy input is directly fed to the feature extractor
without any pre-processing. Tent is provided as two sets
of thirty frames sequentially. Further, the extracted features
F i
ent, i = 1, 2 are passed through the same set of layers as

the PSD approach, for classification.

IV. EXPERIMENTS AND RESULTS

The proposed approach is evaluated on the EEGMAT
dataset using the two generated topographic maps. Further,
two cognitive load tasks are assessed: mental state qualifi-
cation and count quality classification. For the count quality
classification, only the active state topomaps are used. The
performance using both inputs are compared with each other
and with other methods in literature.

A. Evaluation setup

The network is implemented using Tensorflow libraries
and the experiments are performed on an NVidia Tesla V100
GPU. The network is trained for 200 epochs using an Adam
optimizer with learning rate 0.0001 and a binary cross-
entropy loss. A ten fold cross-validation is performed for
both levels of classification. The classification performance
is evaluated by computing three metrics: accuracy, sensitivity
and specificity. To the best of knowledge, there are no
topomap-based approaches applied on the EEGMAT dataset.
For performance comparison, the spatio-temporal approach
in [13] is utilized, and three temporal aggregation techniques
explored in [13] are implemented here for classification: a)
maxpool; b) LSTM; c) temporal convolution. ResNet pre-
trained model [18] is used for spatial feature extraction.
For the proposed networks, the performance is evaluated
with and without augmentation. For the entropy topomaps,
augmentation of the topomaps is performed for both levels
of classification, by randomly adding noise and varying
brightness levels. For the PSD topomaps, augmentation is
performed on the topomaps for the mental state classification
and for the count quality classification, SMOTe is used to
generate synthetic data to handle the class imbalance.

B. Results and discussion

The cross-validation performance for both levels of clas-
sification is summarized in Table I. Overall, EEG-TopoNet
with PSD-topomaps achieves the best results with accuracy
98.3% for the mental state classification and 95% for count
quality classification. In comparison, a) the entropy based
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TABLE I: Quantitative evaluation on EEGMAT dataset. Evaluation of performance using EEG-TopoNet and two types of
topomaps. Comparison with temporal aggregation techniques in [13].

Approach Mental state classification Count quality classification Number of
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity training parameters

ResNet + maxpool 97.5 98.6 95.8 86.25 86.11 87.5 0.1 million
ResNet + temporal conv 90.1 90.3 90.0 88.75 87.5 90.3 1.8 million
ResNet + LSTM 88.3 87.5 88.9 81.25 81.9 80.5 10 million
EEG-TopoNet (entropy) without augmenta-
tion

87.5 84.7 90.2 87.3 85 88.46 3.5 million

EEG-TopoNet (entropy) with augmentation 90.3 88.89 91.67 86.1 83.3 88.9 3.5 million
EEG-TopoNet (PSD) without augmentation 94.2 93.05 94.5 93.75 94.5 93.05 3.7 million
EEG-TopoNet (PSD) with augmentation 98.3 98.6 97.2 95 94.5 96.4 3.7 million

topomaps do not perform well in both stages of classification;
b) the ResNet + maxpool, with the least training parameters,
achieves comparable performance of 97.5% on mental state
classification, but does not perform well on count quality
classification; c) The ResNet + LSTM has a lot of training
parameters, however, does not impress at both the tasks; and
4) The convolution based temporal aggregation achieves the
second best performance at the count quality assessment with
1.8 million trainable parameters. The proposed approach with
PSD has twice the number of parameters but gives the highest
performance for both the tasks and shows a considerable
improvement of 6.8% over the state-of-the-art, for count
quality classification.

A unique merit of the proposed approach is that, unlike
the conventional approach which use signal analysis and
are based on a number of features, the proposed approach
operates on only one feature - either a PSD based topomap
or entropy based topomap. Conventional techniques employ
multiple hand-crafted features specific to each task. The
baseline performance using the such techniques achieves an
accuracy of 99.9% at mental task [10] and 94.2% at count
quality task [9]. In contrast, the proposed approach achieves
comparable performance with a single feature and an end-
to-end training. Further, the same framework can be used
with a variety of inputs and targeting multiple applications
highlighting the horizontal nature of the proposed method.

V. CONCLUSION
This work explores the application of spatio-temporal

attention-based feature learning using EEG topographic maps
for cognitive load assessment. Topographic representations
are generated by computing power spectral density and
entropy from raw EEG signals. These are fed to a spatio-
temporal deep network for cognitive load assessment at
different levels. The method is evaluated on the EEGMAT
dataset and the performance is compared with other state-
of-art deep networks. The best results are achieved using
the proposed network when applied to PSD-based topomaps.
This shows great scope in localization of activations regions
in the brain and facilitates longitudinal analysis by assessing
spatial propagation of the signal.
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