
  

  

Abstract— Blood pressure (BP) is one of the most crucial vital 

signs of the human body that can be assessed as a critical risk 

factor for severe health conditions such as cardiovascular 

diseases (CVD) and hypertension. An accurate, continuous, and 

cuff-less BP monitoring technique could help clinicians improve 

the prevention, detection, and diagnosis of hypertension and 

manage related treatment plans. Notably, the complex and 

dynamic nature of the cardiovascular system necessitates that 

any BP monitoring system could benefit from an intelligent 

technology that can extract and analyze compelling BP features. 

In this study, a support vector regression (SVR) model was 

developed to estimate systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) continuously. We selected a set of features 

commonly used in previous studies to train the proposed SVR 

model. A total of 120 patients with available ECG, PPG, DBP 

and SBP data were chosen from the Medical Information Mart 

for Intensive Care (MIMIC III) dataset to validate the proposed 

model. The results showed that the average root mean square 

error (RMSE) of 2.37 mmHg and 4.18 mmHg were achieved for 

SBP and DBP, respectively. 

 

I. INTRODUCTION 

Blood pressure (BP) is a critical physiological parameter 
of the human body that can be one of the most important risk 
indicators for hypertension (high BP) and cardiovascular 
diseases (CVD)[1]. CVD is dysfunctions of the heart and 
blood vessels and includes hypertension, cardiac arrhythmia, 
cardiac ischemia, and stroke. CVD is the primary cause of 
universal death and is the leading cause of damage to arteries 
in organs such as the heart, brain, eyes, and kidneys [2].  

High BP or hypertension is the single most crucial 
adjustable risk factor for CVD, and arterial blood pressure 
(ABP) is an efficient way to detect and control CVD [3, 4].  
The physical condition, physiological rhythm, environmental 
conditions, and so many other factors could vary the BP over 
time. By collecting activities of daily living (ADL) and BP 
variations, there is a possibility of improving the assessment 
of a patient's hypertension state. 

Fortunately, most of the problems caused by CVD are 
preventable and treatable. Continuous and cuff-less BP 
monitoring techniques would help reduce CVD risk through 
early detection and maintaining control at earlier stages of the 
disease. Moreover, early detection of hypertension could 
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dramatically decrease the likelihood of disability and mortality 
and reduce treatment costs.  

With recent revolutionary developments in machine 
learning, researchers have recognized its remarkable potential 
in the healthcare industry to improve people wellbeing [5, 6]. 
The support vector machines (SVM), linear regression, 
regression trees, model trees, the ensemble of trees, and 
random forest are few machine learning algorithms that are 
considered feasible approaches for cuff-less and continuous 
BP monitoring [7, 8]. Moreover, the ability of machine 
learning to learn the function of the complex system makes it 
a promising method for BP estimation. The main idea is to use 
machine learning to extract surrogate cardiovascular features 
from time-domain or frequency-domain of physiological 
signals, train the machine learning-based model, and estimate 
BP through the developed model [9].  

This study aims to develop an accurate continuous BP 
estimation model using feature extraction techniques and a 
machine learning model.  

 

II. METHODOLOGY 

A. Database 

The data used in this study was obtained from 120 patients 
selected from the Medical Information Mart for Intensive Care 
(MIMIC-III) Waveform Database Matched Subset [10], a 
subset of the MIMIC-III waveform Database. For each subject, 
420 samples of ECG, PPG, SBP, and DBP individually were 
selected, with a total of 50400 samples for each signal (equal 
to 14 hours of training data for each signal).  

B. Features Selection and Feature Extraction 

ECG and PPG signals can be employed to calculate BP. 
Therefore, we investigated how to enhance the accuracy of the 
BP estimation model using related features from ECG and 
PPG signals. Based on the best performance reported by recent 
studies, a total of 11 BP-related features associated with heart 
rate (HR), pulse transit time (PTT), and characteristics of PPG 
waveforms were carefully chosen from those studies. The 
definition of all selected features is given in Table I. Two 
different PTT features were considered by calculating the time 
between the R-peak of the ECG signal and the specific point  
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of PPG evaluated in each cardiac cycle. 

TABLE I. DEFINITIONS OF SELECTED FEATURES. 

Features Definition 

f1: HR The time distance between two R_R intervals 

f2: PTT peak The time distance between ECG R peak and the 

peak of simultaneously PPG 

f3: PTT foot The time distance between ECG R peak and the 

bottom of simultaneously PPG 

f4: PIR The ratio of PPG peak to PPG bottom 

f5: T1 The time delay between the systolic and diastolic 
peak 

f6: DT Diastolic time 

f7: ST Systolic time 

f8: Ts Time from cycle start to systolic PPG peak 

f9: Td Time from systolic PPG peak to cycle end 

f10: AI Augmentation Index 

f11: LAF Large artery stiffness 

 

As illustrated in Figure 1, the PTT peak was defined as the 
distance between the R-peak of the ECG signal and the PPG 
peak, while the PTT foot was defined as the distance between 
the R-peak of the ECG signal and the PPG foot point. The 
maxima and minima detection routines were implemented for 
each cardiac cycle to locate the PPG systolic peaks and feet, as 
shown in Fig. 1. 

ECG

PPG

PTT peak

PTT 
foot

 

Figure 1. The PTT peak is the distance between the R-peak of the ECG and 

the PPG peak, and the PTT foot is the distance between the R-peak of the 

ECG and the PPG foot. 
 

The effective features of the PPG signal for estimating SBP 
and DBP that were used in this study include; systolic time 
(ST), diastolic time (DT), large artery stiffness index (LAF), 
PPG peak intensity ratio (PIR), augmentation index (AI), and 
the time delay between the systolic and diastolic peak (T1) 
tracted. The extracted features are defined below:  

• Systolic Time (ST), as shown in Fig. 2, ST is described 
as a relative time from PPG foot to PPG peak, presenting 
the cardiac output changes [11]. 

• Diastolic Time (DT), as shown in Fig 2., DT is defined 
as the relative time for PPG peak to PPG foot which 
changes with peripheral resistance [11]. 

• Large Artery Stiffness index (LAF) is the time interval 
between the systolic peak and diastolic peak, which 
measures arterial stiffness [12]. 

• PIR is the ratio of PPG peak intensity to PPG bottom 
intensity, reflecting arterial vasomotion [13]. The arterial 
diameter change Δd is theoretically reflected by PIR 
during one cardiac cycle from systole to diastole point. 
The PIR is defined as: 

𝑃𝐼𝑅 = 𝑒𝛼∆𝑑                        (1) 

where α is a constant related to the optical absorption 
coefficients in the light path.  

• Augmentation Index (AI), as illustrated in Fig 2., is 
defined as the ratio of the diastolic peak and systolic 
peak, which measure the arteries wave reflection as 
following [12]. 

𝐴𝐼 =
𝑥

𝑦
                           (2) 

• The time difference between the systolic and diastolic 
peaks (T1), as shown in Fig 2. The absolute 
maximum of each PPG wave is the systolic peak, and 
the diastolic peak is the relative one.  
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Figure II2. The schematic diagram of PPG Characteristic features. 

 

III. SVR MODEL 

  Support vector machine (SVM) encompasses a range of 
different models divided into linear not-separable vector 
machines, linear separable SVMs, and non-linear SVMs. 
Using the Kernel function, the non-linear SVM converts 
linearly non-separable problems into linearly separable 
problems with high-dimensional space. Thus, the SVM model 
could be used for both classifications and regression networks. 

The version of SVM that use for the regression is called 
support vector machine regression (SVR) [14]. The ability of 
this model to deal with the non-linear relationship of both input 
and output data makes it suitable to address the non-linear 
relation between the features extracted from ECG and PPG 
signals and the actual BP [15].  

A.   Kernel Function Selection 

In some cases, the data is not linearly separable in the 
original, so the kernel function is used to map the projection of 
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input space to a higher dimension where a linear separation is 
feasible. Therefore, support vector machine models can use the 
kernel function 𝐾(𝑥, 𝑥′) to establish a non-linear support 
machine. The polynomial kernel functions, Gaussian Radial 
Basis Function (RBF), and sigmoid kernel function are the 
most common kernel functions [5].  

In this paper, the RBF kernel was implemented in the SVR 
model. The original feature space 𝑥 =  (𝑃𝑇𝑇, 𝐻𝑅, . . . ) was 
mapped onto the new feature space 𝑥’ =  (𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑛). 
Therefore, the new set of the BP indicator data was expressed 
by a linear regression formula in the feature space to determine 
a non-linear mapping model between ECG and PPG signals 
and BP.  

B. Description of Proposed SVR Model 

The non-linear mapping 𝜑(𝑥)  mapped the input sample x 
into a high-dimensional feature space and then estimated the 
regression function through a linear model built in this feature 
space. The main idea was to use non-linear mapping to map 
the input space onto a high-dimensional feature space. The 
non-linear model is shown as follow: 

𝑓(𝑥, 𝜔) = 𝜔 ∙ 𝜑(𝑥) + 𝑏      (3) 

where 𝑥 =  (𝑃𝑇𝑇, 𝐻𝑅, . . . ), 𝜔 is the weight vector, and 
𝑏 is the threshold. The ω and b can be obtained as follow:  

min
1

2
 ∥ 𝜔 ∥2 + 𝑐 ∑  (𝜉𝑖  + 𝜉𝑖

∗1
𝑖=1 ),             (4) 

is subject to: 

𝑦𝑖 − (𝜔𝑇𝑥𝑖 + 𝑏) < 𝜀 + 𝜉𝑖   

(𝜔𝑇𝑥𝑖 + 𝑏) −  𝑦𝑖 < 𝜀 + 𝜉𝑖
∗ 

 𝜉𝑖  +  𝜉𝑖
∗ ≥ 0 

where 𝐶 is a penalty factor, 𝜀 is the loss function, and 
 𝜉𝑖  and 𝜉𝑖

∗ are different relaxation factors. The solution of (3) 
is as follows: 

𝑓(𝑥) =  ∑ (−𝛼𝑖 +  𝛼𝑖
∗𝑙

𝑖 ) 𝐾 (𝑥𝑖 , 𝑥) + 𝑏,               (5) 

where  𝛼𝑖  and 𝛼𝑖
∗ are Lagrange multipliers, 𝑙 is the number 

of SVs, and 𝐾(𝑥𝑖 , 𝑥) is a kernel function.  

Unlike the linear kernel, the RBF kernel transforms the 
database into a non-linear high dimensional space, making it 
possible to overcome the non-linear relationship between 
features and BP. Also, compare with the polynomial kernel, it 
has less model complexity due to fewer tuning parameters. The 
RBF is defined as: 

𝐾(𝑥𝑖 , 𝑥) = exp( −𝛾 ∥ 𝑥 − 𝑥𝑖 ∥2)                      (6) 

where 𝛾 is the kernel parameter. The kernel parameter, 
gamma (𝛾), can adjust the influence of a training sample. The 
larger value will decrease under the influence of the training 
sample. 

C. SVR BP Model 

The HR, PTT, and PPG features were extracted and 
combined using the dataset. These features were used to train 
and test the SVR model. To evaluate the SVR method, the 
database was split into training and testing; 70% of the subjects 
were selected for training and 30% of the rest for the testing 
dataset. 

To establish an SVR model to predict the SBP and DBP 
using the optimal parameters 𝐶 and 𝛾, the parameters were set 
to (100, 10) for 𝐶 , (100, 10) for 𝛾 , and [0.01,1] for 𝜀. These 
values were chosen based on the promising results achieved 
by Zhang et al. [16], which were achieved by the optimization 
function created on 10-fold cross-validation. The proposed 
SVR model was implemented in the MATLAB environment.  

The details of the SBP and DBP prediction process using 
the SVR model is shown in Fig 3. After extraction and 
combination of features, the data was divided into training and 
test set. Then the SVR model was established based on the 
optimal parameter of RBF kernel (𝐶, 𝛾, 𝜀), and then the 
training dataset was used to train the SVR model. Finally, the 
testing dataset was fed to a trained network in the next step to 
estimate the SBP and DBP.  

Testing set:

HR, PTT 

features, and 

PPG features 

SVR BP model 
Predicted results 

(SBP, DBP)

Features:

HR, PTT 

features, and 

PPG features 

C, gamma, Ɛ  

(RBF core 

Parameter)

Training Set SVR Model Training

Estimate

 

Figure 3. Schematic diagram of SBP and DBP estimation using SVR model. 

IV. EXPERIMENTAL RESULTS AND COMPARISON 

The prediction results of the SVR model using hand-
engineered features were evaluated in terms of accuracy and 
RMSE. The accuracy was defined as: 

Accuracy = 100 ∗  
Number of correct estimation

Total number of testing data
               (7) 

where the number of correct estimations was calculated as 
the number within the acceptable error margin ≤ 5mmHg set 
by AAMI. The experimental results show that the SVR model 
reaches an SBP estimation accuracy of 93.52 % and DSB 
estimation accuracy of 90.12 %.  

Moreover, the RMSE obtained from (8) was used as an 
indicator for evaluating the performance of the estimation 
model.  

RMSE =  √
∑(xi− yi)2

n
        (8) 

where 𝑥𝑖 is the estimated BP, 𝑦𝑖 is the actual value, and 𝑛 
is the total number of values in the testing dataset. The RMSE 
of 2.37 mmHg and 4.18 mmHg for SBP and DBP were 
calculated, respectively.  

Table II summarizes a comparison between the SVR-based 
model employed in this study and previously established 
studies that used the machine learning model to estimate BP. 
To establish a reasonable comparison, only the studies 
utilizing RSME metrics were chosen for comparison. 
Nidigattu et al. [17] employed extensive signal processing and 
feature engineering. They employed three types of machine 
learning methods to estimate the BP and calculated the RMSE 
for SBP. They used data related to 140 individual healthy 
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subjects of just over three minutes as their database. The 
database is divided into training and test set based on the 
number of subjects. To determine the specific scale factors of 
the pulse wave analysis (PWA) based BP estimation model, 
Yoon et al. [18] employed pulse arrival time (PAT) as a BP 
related parameter. A linear regression model was designed to 
measure SBP and DBP. The experimental results achieved 
lower error but used only 23 subjects to evaluate the results.  

 

TABLE II. COMPARISON OF THE PROPOSED METHOD WITH WELL-
ESTABLISHED RELATED WORK  

Model Number 

of subjects 

RMSE for 

SBP(mmHg) 

RSME for 

DBP(mmHg) 

Three types of 

machine learning 

[17] 

140 healthy 

subjects 

5.86, 9.50, 

10.30 

5.30, 8.30, 

8.25 

PWA and PAT [18] MIMIC, 23 

subjects 

10.6 Yes 

The proposed 

method 

120 2.37 4.18 

 

The SVR BP model proposed in the study was estimated 
with higher accuracy and least error while avoiding 
overlapping the subjects of the training set with that of the test 
set by dividing them based on the number of subjects. This 
implies that the proposed model notably outperforms the other 
models. 

V. CONCLUSION  

The main contribution of this study is the investigation of 
the association between BP and human physiological index 
data by using the SVR algorithm. The SVR model has 
reconstructed the non-linear relationship between the extracted 
features and BP. To evaluate the accuracy and efficiency of the 
proposed method, the physiological signals (ECG and PPG) 
that collected by medical devices in the hospital was used in 
this study. , Within a relative error range of ±5 mmHg 
(according to the American ANSI/AAMI SP10-1992 standard 
specified error range), the proposed SVR model achieved an 
SBP estimation accuracy of 93.52 % and DBP estimation 
accuracy of 90.12 %, respectively. The SVR model proposed 
in the study was estimated with higher accuracy and less error 
while avoiding overlapping the subjects of the training set with 
that of the test set by dividing them based on the number of 
subjects. 

Future research will consider expanding the clinical 
applicability of the model by adding more physiological, 
clinical, and demographic data, including age, sex, respiratory 
rate, diagnosed disease, body temperature, age, and weight. In 
addition, the model with more indicators could improve and 
enrich current health care provisions by discovering the 
relationship between BP related diseases and other diseases.  
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