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Abstract— We consider the problem of training a convolu-
tional neural network for histological localization of colorectal
lesions from imperfectly annotated datasets. Given that we have
a colonoscopic image dataset for 4-class histology classification
and another dataset originally dedicated to polyp segmentation,
we propose a weakly supervised learning approach to histo-
logical localization by training with the two different types
of datasets. With the classification dataset, we first train a
convolutional neural network to classify colonoscopic images
into 4 different histology categories. By interpreting the trained
classifier, we can extract an attention map corresponding to
the predicted class for each colonoscopy image. We further
improve the localization accuracy of attention maps by training
the model to focus on lesions under the guidance of the
polyp segmentation dataset. The experimental results show
that the proposed approach simultaneously improves histology
classification and lesion localization accuracy.

I. INTRODUCTION

Colon cancer is the third most common and fourth most
fatal cancer in the world [1]. In order to prevent colon cancer,
screening, which consists of colonoscopy and histologic
analysis, is considered as the first option [2]. Colonoscopy
is an endoscopic examination that observes and removes
the abnormal colon tissues [3]. Typical histologic analysis
is a microscopic biopsy of the tissues which were re-
moved during the colonoscopy [4]. Over a decade, many
researchers have tried to reduce the burden of histologic
analysis, because it requires additional time and expense due
to the microscopic biopsy [5]. In addition, the required cost
increases as the number of tissues, which are removed during
the colonoscopy, increases [6].

Recently, many studies has developed optical biopsy as
a method for reducing unnecessary histologic analysis [7].
Optical biopsy is a technique that analyzes the abnormal
tissues using optical devices during the colonoscopy. Using
optical biopsy, endoscopists can predict histologic categories
of the lesions without surgically removing the lesions. As a
result, optical biopsy potentially reduces time and expense
by replacing microscopic biopsy. However, existing opti-
cal biopsy methods need additional endoscopic devices to
highlight the cancer-related optical features such as endocy-
toscopy [8] and laser-induced fluorescence spectroscopy [9].
These additional devices could entail changes in the existing
endoscopic system, which further require additional costs.
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In the previous study [10], [11], we have shown that a
computer-aided diagnosis (CAD) system is able to conduct
optical biopsy without additional devices. Based on con-
volutional neural network (CNN), the CAD system takes
white light endoscopic images and predicts the corresponding
histological categories. In addition, the CAD system employs
a model interpretation technique [12] and shows probability
heatmaps with respect to the histological categories. From the
predicted heatmaps, endoscopists can localize and determine
which abnormal tissues to remove. However, the predicted
heatmaps occasionally show high probabilities irrelevant to
the colon cancer such as light reflection, wrinkles, and con-
trast difference. These inaccurate localizations might be due
to the classifer’s decision based on the irrelevant correlation
in the training data [13].

For accurate lesion localization, we propose a multi-task
learning framework, which combines the lesion localization
task into the original histology classification task. With a
dataset, which is originally dedicated for polyp segmentation,
our approach learns to correct the predicted heatmaps derived
from the histology classifier in a weakly supervised learning
manner. Through a retrospective clinical study, we show that
the weakly supervised learning approach can simultaneously
improve lesion localization performance as well as histology
classification accuracy.

II. MATERIALS AND METHODS

In order to enhance the performance of lesion localization,
we employ weakly supervised multi-task learning. The pro-
posed framework simultaneously learns two different tasks:
histology classification and lesion localization. We first train
the classifier with a histology report dataset. Then, we further
train the classifier to predict lesion locations with another
dataset, which is originally dedicated for polyp segmentation.

A. Histology Classification

As a histology classifier, we used ResNet-101 [14], which
was pre-trained with the ImageNet dataset [15]. We adapted
the last fully-connected layer to predict the four histology
classes of colon cancer.

For the supervised learning of the classification task, we
prepared a dataset from Korea University Medical Cen-
ter (KUMC), Seoul, Korea. The KUMC dataset includes
endoscopic images acquired during the colonoscopy and the
corresponding histology reports after the microscopic biopsy.
The images and the histology reports were carefully collected
from the hospital’s Picture Archiving and Communication
System (PACS). After collecting data, we categorized the

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 3725



Fig. 1. Overview of histological localization with weakly supervised multi-task learning. The histological localization task consists of two different
processes: histology classification and lesion localization. The histology classification process uses a dataset with 4 different histology categories for
training. For lesion localization, we further train the classifier to produce attention maps consistent to masks from a polyp segmentation dataset.

colonoscopic images into four classes based on the corre-
sponding histology reports. The histology classes include
normal, tubular adenoma with low-grade dysplasia (TA-
LGD), tubular adenoma with high-grade dysplasia (TA-
HGD), and adenocarcinoma (CA). The acquired data include
1000 normal images, 1000 TA-LGD images, 500 TA-HGD
images, and 500 CA images.

B. Attention Map for Lesion Localization

For lesion localization, the model predicts a probabil-
ity heatmap, which is related with the predicted histology
class, using a model interpretation technique. We used grad-
CAM [12] to interpret the histology classifier. The grad-
CAM synthesized an attention map from the classifier ac-
cording to the gradients, which are computed with respect
to the maximal output of the histology classification.

For training our model, we used the CVC-ClinicDB [16]
dataset, which is dedicated for polyp segmentation. The
CVC-ClinicDB consists of 612 colonoscopic images and
polyp masks, which were collected from 29 colonoscopy
videos containing colon polyps. Most of the colonoscopic
images (478 images) contain adenoma lesions such as TA-
LGD or TA-HGD, and part of the colonoscopic images (124
images) contain hyperplastic polyps. The polyp masks are
binary masks indicating polyps within the image, and there
is no detailed label for the histology information.

C. Weakly Supervised Learning for Histological Localiza-
tion

In order to train the classifier with the two different
datasets, we propose a multi-task learning framework con-
sisting of supervised learning for histology classification
and weakly supervised learning for attention correction. For
histology classification, we trained the classifier with the

KUMC dataset using classification loss. The classification
loss Lcls is defined by categorical cross-entropy between the
histology report and histology classification:

Lcls =
∑
c

yc log ŷc, (1)

where yc indicates class based on histology reports c (normal,
TA-LGD, TA-HGD, and CA), and ŷc indicates predicted
histology reports.

In order to improve the accuracy of attention maps, we
further trained the classifier with the CVC-ClinicDB dataset
using localization loss. The lesion localization loss Lloc is
defined by weighted binary cross-entropy between the polyp
mask and the predicted region.

Lloc =
∑
i,j

(
wP (i, j) log P̂ (i, j)

+ (1− P (i, j)) log (1− P̂ (i, j))
)
, (2)

where P (i, j) ∈ {0, 1} indicates the lesion existence at
pixel (i, j), P̂ (i, j) ∈ [0, 1] indicates the predicted heatmap
probability at (i, j), and w is the lesion weight to minimize
missed lesion localization. We set the w as 5 in this study.

For multi-task learning for histological localization, we
trained the classifier by switching between the two different
learning losses. After 5 training iterations for histology clas-
sification with the KUMC dataset, we trained the classifier
using the lesion localization loss with the CVC-ClinicDB
dataset. During the lesion localization training process, the
classifier learns to produce attention maps that correspond
to the segmentation masks. We trained the classifier using
Adam optimizer [17] for 72 epochs of classification training.
The learning rate was set to 10−5 with β1 = 0.9, β2 = 0.999,
and ε = 10−7.
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Histological Category LGD HGD CA

Single-Task Model [11] 48.10% 74.17% 87.28%
Our Method 55.00% 74.38% 87.37%

TABLE I
DICE SCORES OF SUPERVISED SINGLE-TASK LEARNING METHOD AND

WEAKLY SUPERVISED MULTI-TASK LEARNING METHOD FROM

CROSS-VALIDATION WITH KUMC DATASET. WE EMPLOYED

GRAD-CAM TO EXTRACT PROBABILITY HEATMAPS FROM THE TWO

METHODS. THE REGIONS OF INTERESTS (ROIS) WERE PREDICTED BY

THRESHOLDING THE PROBABILITY HEATMAPS WITH 0.5, 0.4, AND 0.4
FOR LGD, HGD, AND CA, RESPECTIVELY. WE MEASURED DICE

SCORES BETWEEN THE PREDICTED ROIS AND TRUE LABELS FOR EACH

HISTOLOGICAL CATEGORY.

III. RESULTS AND DISCUSSION

We evaluated the weakly supervised multi-task learning
framework by comparing it with a typical supervised learning
approach. For performance evaluation, we conducted five-
fold cross-validation with the KUMC dataset. We divided
the dataset into 5 splits where each split has 200 normal
images, 200 TA-LGD images, 100 TA-HGD images, 100
CA images. In each validation, we trained the model with 4
splits and tested the trained model with the remaining split.
By repeating the validation 5 times, we cross-validated the
model with the entire dataset.

From the cross-validation with the KUMC dataset, we
summarized the results using a confusion matrix of the
predicted histology classes in terms of recall, precision, and
classification accuracy.

For performance evaluation of lesion localization, we pre-
pared a test set by annotating the colon lesions with bounding
boxes. From model prediction to produce heatmaps of the
colonoscopic images in the test set, we calculated the regions
of interests (ROIs) by thresholding the predicted heatmaps.
Then, we summarized the results using the Dice coefficient
between the annotated bounding boxes and predicted ROIs.
The evaluated threshold values were 0.4, 0.5, and 0.6.

A. Performance Evaluation of Lesion Localization

Table I compares the lesion localization performance be-
tween the single-task learning approach [11] and our multi-
task learning approach. The lesion localization was improved
for all histology classes in the weakly supervised multi-task
learning approach. Especially, the lesion localization perfor-
mance was lower in the classes with smaller sized colon
lesion. The Dice Score of TA-LGD (48.10%) was lower
than TA-HGD (74.17%), and the Dice score of TA-HGD
was also lower than CA (87.28%). We also found that the
performances were further improved for small-sized colon
lesions by the weakly supervised multi-task learning method
with the polyp segmentation dataset. The Dice score of the
TA-HGD was higher (+6.90%) than the HGD (+0.21%) and
the CA (+0.09%).

Figure 2 shows examples of the corrected attention maps.
The supervised single-task learning model showed attention

Fig. 2. Comparison of lesion localization results between supervised single-
task learning and our weakly supervised multi-task learning. The heatmaps
are acquired from the cross-validation using the KUMC dataset. Yellow
boxes show the labeled bounding boxes for lesion locations. The irrelevant
features highlighted by the supervised single-task learning model are listed.

maps affected by light reflection spots, contrast difference,
and bleeding areas. These irrelevant heatmaps might ad-
versely affect endoscopists when understanding the predicted
histology and determining the resection regions. Compared
to the single-task learning approach, the weakly supervised
multi-task learning approach resulted in attention maps fo-
cused on the colon lesions.
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Normal LGD HGD CA Precision

Normal 949
(-12)

33
(+9)

7
(-4)

11
(+7)

94.9%
(-1.2%)

LGD 40
(-3)

829
(+24)

100
(-16)

31
(-5)

82.9%
(+2.4%)

HGD 6
(-3)

97
(+9)

292
(+13)

105
(-19)

58.4%
(+2.6%)

CA 5
(-1)

26
(-7)

107
(+8)

362
(+0)

72.4%
(+0.0%)

Recall 94.9%
(+0.6%)

84.2%
(-0.6%)

57.7%
(+2.5%)

71.1%
(+2.3%)

ACC: 81.1%
(+0.8%)

TABLE II
CONFUSION MATRIX OF WEAKLY SUPERVISED LEARNING MULTI-TASK

MODEL FOR HISTOLOGICAL LOCALIZATION. THE NUMBERS IN

PARENTHESES INDICATE DIFFERENCES COMPARED TO THE SINGLE-TASK

MODEL [11]. THE ROWS REPRESENT PREDICTED CLASSES, AND THE

COLUMNS REPRESENT GROUND TRUTH.

B. Evaluation of Histology Classification Performance

Table II shows the confusion matrix of histology classifica-
tion performance. The correctly classified images increased
from 805 images (80.5%) to 829 images (82.9%) for the
TA-LGD, and the correctly classified images also increased
from 279 images (55.8%) to 292 images (58.4%) for the
TA-HGD. As a result, the overall accuracy of histological
localization was slightly improved in weakly supervised
learning (81.1%) compared to supervised single-task learn-
ing (80.3%). Interestingly, the performance of histology
classification improved despite training with a dataset only
dedicated for polyp segmentation without histological class
information.

Similar to real endoscopists, who tend to miss smaller
sized colon lesions than larger colon lesions [18], the deep
learning models show a lower localization performance with
small-sized colon lesions in Table I. However, Tables I
and II show that our weakly supervised multi-task learn-
ing approach improved histology classification performance
for small-sized colon lesions. Along with the enhanced
heatmaps, our multi-task model can potentially support en-
doscopists in localizing small colon lesions and predicting
histological categories. In a future study, we will evaluate
the lesion localization results with endoscopists in order
to investigate whether the proposed method is clinically
acceptable.

IV. CONCLUSION

In this study, we investigated weakly supervised learning
for histological localization in order to improve lesion local-
ization accuracy for CNN-based optical biopsy. We extracted
attention maps from our classifier using a model interpreta-
tion technique. We further trained the classifier to correct the
attention maps with a dataset originally dedicated for polyp
segmentation. The result shows that weakly supervised multi-
task learning improved the lesion localization performance
without performance degradation in histology classification.
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