
  

  

Abstract— Recently, deep learning and convolutional neural 

networks (CNNs) have reported several promising results in the 

classification of Motor Imagery (MI) using 

Electroencephalography (EEG). With the gaining popularity of 

CNN-based BCI, the challenges in deploying it in a real-world 

mobile and embedded device with limited computational and 

memory resources need to be explored. Towards this objective, 

we investigate the impact of the magnitude-based weight 

pruning technique to reduce the number of parameters of the 

pre-trained CNN-based classifier while maintaining its 

performance. We evaluated the proposed method on an open-

source Korea University dataset which consists of 54 healthy 

subjects’ EEG, recorded while performing right-and left-hand 

MI. Experimental results demonstrate that the subject-

independent model can be maximumly pruned to 90% sparsity, 

with a compression ratio of 4.77× while retaining classification 

accuracy at 84.44% with minimal loss of 0.02% when compared 

to the baseline model’s performance. Therefore, the proposed 

method can be used to design more compact deep CNN- based 

BCIs without compromising on their performance. 

I. INTRODUCTION 

In recent years, deep learning (DL) has significantly 

elevated the classification performance of Brain-Computer 

Interface (BCI) systems [1]. By operating directly on raw 

EEG signals to learn distinguishable feature representations, 

deep learning avoids time-consuming pre-processing and 

feature engineering steps [2]. In BCI studies, out of many DL 

models, convolutional neural networks (CNN) are the most 

used model [3][4]. To achieve high classification accuracy, 

CNN models typically need an enormous number of 

computations and thus high-performance servers are essential 

[5]. It is difficult to deploy CNN on end devices with limited 

resources, such as mobile phones or embedded devices. These 

issues must be resolved in order to use mobile-based BCI 

systems or BCI systems outside of the laboratory [6]. 

Recently, many DL methods for EEG-based BCI systems 
have been proposed. Lawhern et al. introduced EEGNet, a 
compact network that utilizes depth-wise and separable 
convolutions to build an EEG-specific model integrating well-
known EEG feature extraction techniques [7]. Schirrmeister et 
al. proposed a deep CNN model that has four convolutional-
max-pooling blocks, out of which the first one is built specially 
to handle EEG input signal, followed by three convolutional-
max-pooling blocks and a fully connected layer [8]. However, 
models based on CNN are complex with many trainable 
parameters. Furthermore, recent BCI studies have shown the 
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benefit of fine-tuning a pre-trained model for better 
performance in individual subjects [9]. Reducing the number 
of parameters in the network may facilitate faster model fine-
tuning. 

One of the most common optimization algorithms used for 
reducing network complexity is pruning. It is possible to delete 
many redundant weights from a trained network with a 
marginal loss in accuracy by pruning. This results in a more 
compressed DL model. Pruning methods are divided into two 
categories: weight pruning and filter pruning. Weight pruning 
removes redundant weights from the weight tensor, whereas 
filter pruning removes redundant convolutional filters 
[10][11]. 

More recently, by applying group sparsity regularization to 
the loss function, Lebedev et al. [12] discovered that certain 
whole groups of weights can be reduced to zero and excluded. 
Structured Sparsity Learning (SSL) was proposed by Wen et 
al. [13] to regularize the structure of deep neural networks 
(DNN). The structured compactness of DNN allows us to 
accomplish higher speedups for the DNN evaluation. Hu et al. 
[14] proposed an algorithm based on the concept that in a large 
network, the output of many neurons is often zero. It is 
reasonable to assume that these zero activations are redundant 
and can be removed. ThiNet was proposed by Luo et al. [15] 
which greedily prunes the convolutional filter that has the least 
impact on the next layer’s output. Chin et al. [16] introduced a 
layer compensated pruning algorithm, which improves 
performance across a range of heuristic metrics. 

In BCI so far, pruning has been used for choosing the most 
relevant features/electrode channels for the P300 based BCI 
[17]. The accuracy was 87% when using the best 8 relevant 
electrodes and 87.5% when using the 8 most salient and fixed 
electrodes: FZ, CZ, PZ, P3, P4, PO7, PO8, and OZ. Arvaneh et al. 
proposed a decision tree-based approach for EEG channel 
selection. Irrelevant channels are eliminated using the decision 
tree. Following that, a pruning process was used to rank the 
remaining channels [18]. In this study, EEG signals were 
recorded using 22 electrodes per subject. The proposed 
method reduces the average number of electrodes from 22 to 
8.44, whereas 3.63% of classification accuracy is reduced. It 
is worth noting that the impact of pruning of deep CNN used 
in a subject-independent MI BCI [19] has yet to be 
investigated.  

The aim of this paper is to reduce the complexity of the 
subject-independent MI based BCI model without reducing 
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the performance using a magnitude-based weight pruning 
algorithm. In order to achieve this purpose, we train end-to-
end subject-independent models on the MI dataset. A deep 
CNN model [8] is used in this study, which has reported the 
highest number of trainable parameters among the state-of-
the-art methods in CNN-BCIs [9]. Then we perform pruning 
for different sparsity levels on the pre-trained models to reduce 
their complexity without affecting the performance of the 
model. The results suggest that even after pruning the model 
to 90% sparsity, the model compressed 4.77× with minimal 
loss in the performance when compared to the baseline model.  

The paper is organized as follows. Section II describes the 
dataset. The proposed methodology is presented in section III. 
Following that, the results and discussion are reported in 
section IV. Finally, in section V, the conclusion and future 
work are discussed.  

II. DATA 

The proposed method is evaluated on the motor imagery 

(MI)  dataset reported in Lee et al [20]. This dataset consists 

of 54 subject’s EEG while performing two-class MI tasks 

(left-and right-hand imagined movement). EEG signals were 

recorded with 62 Ag/AgCl electrodes and at a sampling rate 

of 1000 Hz. Each subject underwent two data recording 

sessions on different days, with training and test phases in 

each session. Each phase had 100 trials per class, totaling 400 

trials. The experiment started with a 3s resting time to prepare 

subjects for performing the MI task. Then the subject 

performed the corresponding MI task for 4s by following the 

visual cue. The screen remained blank for 6s after completing 

each task. For this study, all 62 channels are used and for each 

trial, 0 to 4 second MI tasks are segmented from the 

continuous EEG signals and further downsampled to 250 Hz. 

III. METHODOLOGY 

This section describes the EEG signal representation, the 
baseline model’s architecture, training strategy, and the 
proposed methodology for applying magnitude-based weight 
pruning on subject-independent MI based BCI models. 

A.  EEG Representation  

Each subject 𝑖 has only one EEG dataset and it is divided 

into labeled trials. A single trial for a subject 𝑖 is denoted as 

(𝑋𝑗, 𝑦𝑗),where the pre-processed signal is represented by the 

input matrix 𝑋𝑗 𝜖 ℝ𝑁𝑒× 𝑁𝑡 ,where 𝑁𝑒 is the number of EEG 

electrodes and 𝑁𝑡  is the discretized time samples for a trial 

and 𝑦𝑗stands for the corresponding class label for trial 𝑗. 

Based on the performance of the imagined or executed hand 

movement during the MI paradigm experiment class label 

𝑦𝑗  ∈ 𝐿 =  { 0: " Right hand ", 1: "Left hand"}.  

B. Network Architecture  

We used the deep CNN model proposed by Schirrmeister 
et al. as our baseline, which is denoted as 𝑑. The model 𝑑 is 
trained on the input trials so that it can correctly classify 
unlabeled trials using the output of the classifier 𝑑: ℝ𝑁𝑒 .  𝑁𝑡 →
𝐿. The deep CNN architecture consists of four convolution-
max-pooling blocks followed by a fully connected softmax 
classification layer. In particular, the first block alone contains 
temporal and spatial filters to handle EEG signals. Batch 

normalization and dropout are added for each convolutional-
max-pooling block.  

C. Training Strategy  

Each subject-independent model is trained with training 
and validation data. Adam [21] is used as the optimizer. The 
model training is carried out with early stopping criteria, in 
which validation set accuracy is monitored. The model is 
trained for a maximum of 200 epochs and the epoch with the 
highest validation accuracy is selected. The resulting best 
model is further retrained with the entire training and 
validation data. The model with maximum validation accuracy 
is saved as 𝑊.  

D. Proposed methodology: pruning pre-trained deep CNN 

model  

 Magnitude-based weight pruning [22][23] is performed on 

the pre-trained models to remove redundant values in tensor 

weights 𝑊. We use the TensorFlow framework to prune the 

network’s connections. Pruning is performed on the entire 

model. A binary mask variable that is of the same size and 

shape as the weight tensor is introduced. The binary mask 

variable determines which weights participate in the graph’s 

forward execution. The model weights are sorted by their 

absolute values and the smallest magnitude weights are 

masked to zero until a desired sparsity level 𝑋 % is reached. 

Sparsity implies that 𝑋 % of the tensor weight will be lost. 

The range of the sparsity (k) varies from 10 to 90% in steps of 

10%. The pruned model is retrained for a maximum of 200 

epochs to regain the lost performance. The number of 

iterations is decided by an early stopping method based on 

validation data accuracy. During retraining of the pruned 

model, the sparse structure is maintained, and the remaining 

weights are trained to produce the final sparse model weight 

𝑊̃. Both 𝑊 and 𝑊̃ are then evaluated on test data from the 

test subject. The block diagram for the proposed method is 

shown in Fig.1. A file compression algorithm zip is applied to 

the baseline model weights 𝑊 and the pruned model weights 

𝑊𝑘̃. This helps to reduce the size of the sparse pruned model, 

whereas the baseline model remains the same.  

E. Experiment 

We use the leave-one-subject-out (LOSO) method to 
evaluate subject-independent classification. The model is 
trained with all data except the target subject. Based on the 
previous studies, data from all 53 subjects are split randomly 
into 85% training and 15% validation data, and the subject-
independent model is trained [9][24]. The model with the 
highest validation accuracy is saved and pruned for different 
sparsity levels (10%, 20 % till 90%). The pruned models are 
evaluated on the last 100 trials (session 2 of Day 2) of the target 
subject’s data. The model training was carried out on an 
NVIDIA Tesla V100 GPU with 32 GB GPU of memory. To 
evaluate the impact of pruning, we have calculated 
compression ratio, number of network parameters, and 
classification accuracy as metrics for each k. Compression 
ratio is defined as the original model size 𝑊 divided by the 
compressed model size  𝑊𝑘  [25]. 

IV. RESULTS AND DISCUSSION 

In this section, the results of the pruned model are compared
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Figure 1. Flow diagram for the proposed method

with the baseline model. The metrics such as the average 
classification accuracy for all subjects, compression ratio, and 
the number of network parameters for the pruned model at 
different sparsity levels are reported. 

A. Classification Accuracy  

 The subject-independent baseline model has an average 

classification accuracy of 84.46% (±11.39%). The baseline 

accuracy is in line with the reported results in the literature 

[9]. The classification accuracy of the pruned model varies 

with different sparsity levels, as shown in Fig.2. The accuracy 

is affected by the number of redundant values removed from 

the weight tensor. When the model is pruned to lower sparsity 

levels, the model’s redundancy is high, which affects the 

classification performance of the model. For example, at k = 

10%, (statistically insignificant, p=0.143) 0.86% drop in 

performance is observed. The maximum classification 

accuracy of 85.53% is achieved at 70% sparsity. When the 

model is pruned more than 70% sparsity, important weights 

of the model are discarded. As a result, the classification 

accuracy drops to 84.44%. Even after pruning 90% of the 

weights, the classification accuracy is still 84.44% (±11.39%) 

which remains close to the baseline model’s accuracy of 

84.46%. Since the difference in the performance is low 

(statistically insignificant, p=0.976), which again helps with 

the research goal to compress the model without impacting 

the performance.  

B. Compression Ratio 

Fig.3 depicts the compression ratio trend for different 

sparsity levels. The model is compressed by removing the 

redundant weights based on the sparsity level. When the 

sparsity is higher than 80%, our proposed method produces a 

maximum compression ratio of 4. 77×. This proves that the 

efficient deep CNN model can be reduced to 4.77× without 

affecting the model performance. 

C. Number of Parameters 

The baseline deep CNN model has 305K parameters and a 

model size of ~703KBs. When the model is pruned for 

maximum sparsity of 90% with a compression ratio of 4.77×, 

the parameters of the model are reduced to 63K with only a 

0.02% (p=0.976) loss in the model performance. This 

demonstrates that the pruned model performs similarly to the 

baseline model, which has a significantly larger number of 

parameters. The performance metrics for the baseline model 

and the pruned models are shown in Table I and Table II, 

respectively.   

 

Figure 2. Average classification accuracy (N=54) for different sparsity 

levels and the baseline model  

 
Figure 3. Sparsity vs Average compression ratio 
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TABLE I.  RESULTS FOR THE BASELINE MODEL 

Model Size 

(bytes) 
Parameters 

Average 

classification 

accuracy ± SD  

720687 305K 84.46 ± 11.39% 

TABLE II.  RESULTS FOR THE PRUNED MODEL 

Sparsity 

level 
Model 

Size 

(bytes) 

Average 

compression 

Ratio 

Parameters Average 

classification 

accuracy ± 

SD (%) 

10 % 681396 1.05 × 290K 83.6 ± 11.36 

20 % 628807 1.14 × 267K  82.84 ± 13.11 

30 % 573475 1.25 × 244K 84.05 ± 12.24 

40 % 507381 1.42 × 214K 84.23 ± 12.21 

50 % 446941 1.61 × 189K 84.71 ± 11.39 

60 % 377444 1.9  × 160K 85.42 ± 11.23 

70 % 308858 2.33 × 130K 85.53 ± 11.33 

80 % 233314 3.08 × 99K 85.18 ± 11.74 

90 % 150968 4.77 × 63K 84.44 ± 11.39 

D. Discussion 

In this paper, we investigated the effectiveness of 

magnitude-based weight pruning on the subject-independent 

deep CNN model. The proposed method reduces the number 

of parameters, which in turn reduces the model size while 

maintaining the classification accuracy. The results suggest 

that the baseline subject-independent models are likely to be 

severely over-parameterized. Throughout the study, we 

examined the effectiveness of pruning as a method of model 

compression. In the future, frameworks that support sparse 

computations will be evaluated to investigate potential 

advantages in computational speed, power, etc. Interpreting 

the network representation before and after pruning is added 

to learn the most relevant EEG parameters. 

V. CONCLUSION 

In this study, we evaluated the impact of pruning on 

subject-independent MI based BCI models. The state-of-the-

art deep CNN model with a large number of parameters 

reported a classification accuracy of 84.46% in subject-

independent MI classification. The deep CNN models have 

many parameters and large model size. As a result, such 

complex models consume a significant amount of storage and 

computational resources. To address this limitation, the 

proposed method compresses the model by 4.77× for 90% 

sparsity while maintaining the classification accuracy at 

84.44%. The results suggest that the complexity of the 

subject-independent MI based model can be reduced while 

retaining the model performance and thus it is easier to deploy 

the model into resource-constrained end devices. Thus, the 

proposed method can be used to create more compact deep 

CNN-based BCIs while maintaining the performance of the 

model. 
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