
  

 
 

Abstract — Brain imaging using conventional head coils 
presents several problems in routine magnetic resonance (MR) 
examination, such as anxiety and claustrophobic reactions 
during scanning with a head coil, photon attenuation caused by 
the MRI head coil in positron emission tomography (PET)/MRI, 
and coil constraints in intraoperative MRI or MRI-guided 
radiotherapy. In this paper, we propose a super resolution 
generative adversarial (SRGAN-VGG) network-based approach 
to enhance low-quality brain images scanned with body coils. 
Two types of T1 fluid-attenuated inversion recovery (FLAIR) 
images scanned with different coils were obtained in this study: 
joint images of the head-neck coil and digital surround 
technology body coil (H+B images) and body coil images (B 
images). The deep learning (DL) model was trained using images 
acquired from 36 subjects and tested in 4 subjects. Both 
quantitative and qualitative image quality assessment methods 
were performed during evaluation. Wilcoxon signed-rank tests 
were used for statistical analysis. Quantitative image quality 
assessment showed an improved structural similarity index 
(SSIM) and peak signal-to-noise ratio (PSNR) in gray matter 
and cerebrospinal fluid (CSF) tissues for DL images compared 
with B images (P < .01), while the mean square error (MSE) was 
significantly decreased (P < .05). The analysis also showed that 
the natural image quality evaluator (NIQE) and blind image 
quality index (BIQI) were significantly lower for DL images than 
for B images (P < .0001). Qualitative scoring results indicated 
that DL images showed an improved SNR, image contrast and 
sharpness (P< .0001). The outcomes of this study preliminarily 
indicate that body coils can be used in brain imaging, making it 
possible to expand the application of MR-based brain imaging. 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) has been widely used 
as an in vivo imaging technique due to its safe, nonintrusive 
nature and high resolution. In particular, MRI has many 
applications in brain imaging because it is useful in an 
environment with many hydrogen nuclei and little contrast 
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density [1]. In general, the scanning procedure for brain 
imaging requires patients to first have their head inserted with 
a head coil into the scanner and remain in that position for a 
long time [2]. However, conventional head coils present the 
following problems in practical applications. (a) Photon 
attenuation due to MRI head coils in positron emission 
tomography (PET)/MRI. In PET/magnetic resonance (MR) 
systems, MR head coils may be a potential source of image 
distortions and may degrade PET image quality due to 
additional attenuation and scatter [3-5]. (b) Coil constraints in 
intraoperative MRI or MRI-guided radiotherapy. The 
radiofrequency coils in intraoperative MRI systems need to be 
compatible with intraoperative treatment methods, especially 
in brain surgery. Conventional MRI head coils can only 
partially meet the needs of intraoperative MR [6]. (c) Anxiety 
and claustrophobic reactions during brain MRI with a head 
coil. One study showed that the position or wearing of a head 
coil may impact anxiety levels [7]. Therefore, finding a 
method to replace the head coil for brain imaging will make 
MR applications more convenient. 

The main motivation for the proposed study originates 
from the following. Digital surround technology (DST) 
combines the excellent signal-to-noise ratio (SNR) and 
sensitivity of high-density surface coils with superior 
uniformity of integrated radiofrequency bodies, resulting in 
richer and higher quality body imaging. This shows the 
potential to facilitate brain imaging with a DST body coil 
instead of using a head coil in conventional brain imaging. In 
addition, with continuous improvements in data availability 
and processing capacity in recent years, various deep learning 
(DL) applications in the field of medical imaging have 
naturally been developed. Many studies have shown that 
convolutional neural networks (CNNs) are more efficient than 
conventional methods for data processing and analysis, and 
related studies have also been conducted in the field of image 
enhancement [8-11]. 
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Figure 1. The workflow of the proposed deep-learning-based method. Two 
types of T1 FLAIR images composed the dataset. Data preprocessing was 
performed before training. The DL model was trained based on the SRGAN 
and VGG architectures. G = generator network, D = discriminator network. 
In particular, a generative adversarial network (GAN) is a type 
of adversarial trained network that includes a generator 
network G and a discriminator network D [12].GANs have 
been applied to medical images for various purposes, such as 
noise reduction and resolution improvement [13-15]. 

We conducted this study to investigate the possibility of 
improving the quality of DST body coil imaging using a DL-
based super resolution generative adversarial (SRGAN-VGG) 
network and to evaluate the potential of such methods to 
enable changes in the conventional scan mode of brain 
imaging. 

II. MATERIALS AND METHODS  

A. Dataset 
This study was approved by the Institutional Review Board 

of Beijing Friendship Hospital, Capital Medical University, 
and informed written consent was obtained. Forty healthy 
subjects were recruited in this study. None of the subjects had 
structural changes or signs of disease in the brain, and all 
subjects were older than 18 years. MRI scans were performed 
using a SIGNA Pioneer 3.0 T MRI scanner (GE Healthcare, 
Maukesha, WI, USA). Two types of T1 fluid-attenuated 
inversion recovery (FLAIR) images were obtained from each 
subject in this study: joint images of the head-neck coil and 
digital surround technology (DST) body coil (H+B images) 
and body coil images (B images). The head coil was removed 
from the scanner after the H+B image scan, and body coil brain 
imaging was performed. The imaging parameters were as 
follows: repetition time (TR), 1750 ms; echo time (TE), 21.1 
ms; inversion time, 759.2 ms; matrix, 320×256; field of view 
(FOV), 22×22; slice thickness, 5 mm; and spacing between 
slices, 6 mm. Twenty-four image slices were obtained from 
each subject. 

B. Methodology 
Fig. 1 shows the workflow of the proposed DL-based 

method. It includes two parts: data preprocessing and DL. 

1) Data preprocessing 

The H+B and B images were not perfectly aligned because 
the coils and the patient position were changed during the scan. 
Therefore, in the preprocessing steps, we performed image 
registration between H+B images and B images for the same 
subject to ensure that the two different types of images were 
coregistered to the same anatomical template as much as 
possible. Then, each image was cropped to nonoverlapping 
100x100 patches for augmentation and random rotation of 90, 
180, and 270 degrees for each patch. Furthermore, the min-
max normalization method was used to normalize the various 
images. 

2) SRGAN-VGG 

The SRGAN-VGG architecture is based on the GAN and 
uses VGG to optimize the loss function. It consists of a 
generator network, G, a discriminator network, D, and the 
VGG network. The generator network for image enhancement 
begins with a 9x9 convolution filter followed by 4 residual 
blocks. Each residual block is composed of two 3x3 filters 
alternated with batch normalization layers. After the residual 
network, there are two additional 3x3 kernels and one 9x9 
kernel. All convolutional kernels in the generator network 
consist of 64 channels and are followed by a rectified linear 
unit (ReLU) activation function, except for the last kernel, for 
which tanh activation is applied. In the discriminator network, 
5 convolution filters, each followed by a leaky ReLU function, 
are used in our model. All kernels alternate with batch 
normalization layers except for the first layer. A sigmoid 
activation function is applied to the last fully connected layer 
to output the probability that the input image is a high-quality 
image. A pretrained VGG-19 network was used to extract the 
features. 

3) Loss function 

Texture loss, content loss and total variation loss were 
combined to form our final loss function in this study. The 
texture loss was defined as the cross-entropy loss function of 
the discriminator: 

 Ltexture=-∑ logD(G"Ip#,Ig)i  (1) 

where G and D denote the generator and discriminator 
networks, respectively. 

The VGG-19 network was implemented for feature map 
extraction, and the content loss was defined as the Euclidean 
distance between the feature maps of the enhanced and 
ground-truth images [12]: 

Lcontent=
1
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where Øj() denotes the feature map obtained from the j-th 
convolutional layer of the VGG-19 network, and 𝐶), 𝐻), and 
𝑊)  denote the channel number, height, and width, respectively, 
of this feature map. 

The final total variation loss was designed to smooth the 
enhanced images: 

                      Ltv= 1
CHW

,∇xG"Ip#+∇yG"Ip#,                   (3) 

where C, H, and W denote the channel number, height, and 
width, respectively, of the generated image. 
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The SRGAN-VGG network was trained on 36 subjects on 
a graphic processor (Quadro P4000, NVIDIA, Santa Clara, 
CA, USA) for 20k iterations with a batch size of 32 using the 
TensorFlow framework. The parameters of the network were 
optimized using the Adam optimizer via stochastic gradient 
descent with a learning rate of 5e-4. Images from the 
remaining 4 subjects were used for testing. 

C. Evaluation methods and statistical analysis 
For full-reference image quality assessment, images in 

test data were segmented into gray matter (GM), white matter 
(WM) and cerebrospinal fluid (CSF) using SPM12 software 
(http://www.fil.ion.ucl.ac.uk/spm), and the model was 
quantitatively evaluated in terms of the mean square error 
(MSE), peak signal-to-noise ratio (PSNR), and structural 
similarity index (SSIM). No-reference image quality 
assessment methods — natural image quality evaluator 
(NIQE) and blind image quality index (BIQI) — were also 
used in this study. Notably, images with higher PSNR and 
SSIM values and lower MSE, BIQI, and NIQE values indicate 
better image quality. In addition, DL images and B images 
were qualitatively scored by two expert radiologists. The 
SNRs (SNR_Cortex, SNR_GM nuclei and SNR_WM nuclei), 
image contrast, image sharpness, and artifacts were evaluated 
according to the Likert five-point scale method and rated as 
follows: 1, very bad; 2, bad; 3, acceptable; 4, good; and 5, 
excellent [16]. 

Nonparametric Wilcoxon signed-rank tests were 
performed in R (version 3.5.1, http://www. r-project.org/) to 
compare the quantitative and qualitative assessment of the DL 
images and B images, respectively. The significance level 
was set to P < .05 (2-sided). The interrater reliability was 
assessed using the kappa coefficient based on the scores of 
each expert radiologist. The coefficient was interpreted as 
follows: almost perfect (0.81-1), substantial (0.61-0.80), 
moderate (0.41-0.60), fair (0.21-0.40), slight (0.01-0.20), or 
poor (≤ 0) reliability [17]. 

III. RESULTS AND DISCUSSION 

The quantitative and qualitative assessments both showed 
that the image quality of the DL images was better than that of 
the B images. Fig. 2 shows a comparison of representative T1 
FLAIR images consisting of B images, H+B images and DL 
images. Table I shows the f MSE, PSNR and SSIM values of 
B and DL images compared with H+B images in different 
tissues. All three image metrics were improved after DL. The 
SSIM value showed significant differences the GM, WM, and 
CSF. This implies that DL images have a higher structural 
similarity with high-quality images, which is very important 
for structure recognition and diagnosis in clinical practice. 
Table II shows that the NIQE and BIQI values of the DL 
images were significantly lower than those of the B images (all 
P < .0001). The results presented in Table I and Table II 
indicate that the DL images showed reduced image distortion 
and higher image quality.  

Qualitative scoring results for the DL and B images are 
shown in Fig. 3. Compared with the B images, the DL images 
had higher scores for the SNRs (Cortex_SNR, SNR_GM 
nuclei and SNR_WM nuclei: 3.42 ± 0.36 versus 2.38 ± 0.28; 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Representative results for a healthy subject. T1 FLAIR images are 
displayed for the DL results (top) and magnified views (bottom) of the body 
coil images (B), joint head-neck coil and body coil images (H+B) and deep 
learning images (DL). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Comparison of the qualitative scoring results for the DL and B 
images. (a) Image quality scores as percentages for DL and B images when 
evaluated by blinded expert radiologists in terms of the SNR, image contrast, 
image sharpness, and artifacts. Each color bar represents the percentage of 
cases with a particular score. (b) Mean scores for DL and B images. Each 
color bar represents the mean score for a particular category. The error bars 
represent the standard error of the mean. DL = images reconstructed by deep 
learning, B = B images, WM = white matter, GM = gray matter, SNR = 
signal-to-noise ratio, **** = significant difference (P < .0001). 

3.77 ± 0.25 versus 2.83 ± 0.24; and 3.54 ± 0.37 versus 2.37 ± 
0.31, respectively, all P < .0001), image contrast, and image 
sharpness (3.69 ± 0.29 versus 2.42 ± 0.31, 3.42 ± 0.29 versus 
2.40 ± 0.29, respectively, all P < .0001) and lower scores for 
artifacts (2.52 ± 0.37 versus 3.76 ± 0.25, P < .0001). The kappa 
coefficients are mostly between 0.21 and 0.40, indicating fair 
agreement between the two observers. This may be due to the 
two radiologists having different amounts of experience and 
different understandings of DL images. These problems will 
be mitigated as the amount of data and the radiologists’ 
experience increases and the methods are optimized. 

A multiterm loss function including texture loss, content 
loss and total variation loss was used in this study. For medical 
images, content loss based on the pretrained VGG-19 network  
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TABLE I.  MSE, PSNR AND SSIM VALUES OF B IMAGES AND DL 
IMAGES AGAINST H+B IMAGES IN DIFFERENT TISSUES 

Metrics B Images DL Images P Value a 

GM_MSE 0.0428 ± 0.0138 0.0389 ± 0.0122 < .05 

GM_PSNR 14.0265 ± 1.9318 14.4145 ± 1.8435 < .05 

GM_SSIM 0.7977 ± 0.0568 0.8202 ± 0.0497 < .0001 

WM_MSE 0.0253 ± 0.0107 0.0231 ± 0.0094 ns 

WM_PSNR 16.5625 ± 2.5865 16.8723 ± 2.3643 ns 

WM_SSIM 0.8685 ± 0.0493 0.8868 ± 0.0407 < .01 

CSF_MSE 0.0248 ± 0.0069 0.0218 ± 0.0082 < .01 

CSF_PSNR 16.2080 ± 1.3663 16.4820 ± 1.4004 < .05 

CSF_SSIM 0.8560 ± 0.0320 0.8750 ± 0.0259 < .0001 

Data are presented as the means ± standard deviations. ns = no significance 

a. Nonparametric Wilcoxon signed-rank test 

TABLE II.  NIQE AND BIQI VALUES FORB IMAGES AND DL IMAGES  

Metrics B Images DL Images P Value a 

NIQE 5.7302 ± 0.4573 4.0018 ± 0.1688 < .0001 

BIQI 53.2126 ± 9.9170 29.6739 ± 1.8583 < .0001 

Data are presented as the means ± standard deviations. ns = no significance 
a. Nonparametric Wilcoxon signed-rank test 

encourages similar feature representations, including various 
aspects of image content and perceptual quality, rather than 
measuring the per-pixel differences between images. The total 
variation loss function was used to eliminate salt-and-pepper 
noise to some extent, resulting in smoother images. Therefore, 
the image SNR after DL is improved, resulting in better image 
contrast. 

From a clinical perspective, the presented network will 
require further training to achieve sufficient performance for 
clinical applicability. However, the methodology is worthy of 
generalization. The following clinical prospects of the 
methodology are promising: (a) the proposed methodology 
may allow DST body coil imaging to be more widely used in 
clinical practice because of the potential to apply DL to obtain 
high-quality images from DST body coil data, and (b) the 
wider use of body coil imaging instead of head-neck coil 
imaging could enable more flexible subject examinations and 
reduce patient suffering during brain therapy. 

CONCLUSION 
By applying a novel SRGAN-VGG-based DL method, we 

were able to enhance low-quality body coil brain images. The 
performance of the DL method was demonstrated on a small 
dataset, and the results suggest the possibility of applying 
DST body coils in brain imaging, thus making it feasible to 
modify the conventional scan mode of brain MRI and expand 
the use of MRI in clinical practice. 
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