
  

 

Abstract— Induced pluripotent stem cells (iPSCs) have huge 

potential in regenerative medicine research and industrial 

applications. However, building automatic method without 

using cell staining technique for iPSCs identification is an 

important challenge. To improve the efficiency of producing 

iPSCs, we build an accurate and noninvasive iPSCs colonies 

detection method via ensemble Yolo network based on the self-

collected bright-field microscopy images. Meanwhile, test-time 

augmentation (TTA) is leveraged to further improve the 

detection result of our iPSCs colonies detection method. 

Extensive experimental results on our dataset demonstrate that 

our method obtains quite favorable detection performance with 

the highest F1 score of 0.867 and the highest mean average 

precision score of 0.898, which outperforms most mainstream 

methods. 

I. INTRODUCTION 

As a type of pluripotent stem cell derived from somatic 
cells through co-expression of defined pluripotency- 
associated factors, induced pluripotent stem cells (iPSCs) hold 
great promise in the field of regenerative medicine [1, 2]. 
However, iPSCs derivation is a slow and inefficient process, 
which takes 1-2 weeks for mouse cells and 3-4 weeks for 
human cells [1, 3]. Researchers have to spend a lot of time and 
energy on iPSCs microscopy images analysis as shown in Fig. 
1, which indicates the urgent need to develop an automatic and 
fast method with reliable performance to detect iPSCs in 
microscopy images for further research. 

Since Tokunaga et al. [4] first introduced machine learning 
into the quality evaluation of iPSCs in 2014, the automated 
analysis of iPSCs microscopy images via machine learning has 
been widely developed [5], but the images and features of 
iPSCs still need to be selected manually for training these 
researches, which requires numerous time and efforts from 
researchers. More recently, deep learning has been widely 
used in the field of iPSCs microscopy images analysis. For 
example, Kimmel et al. [6] developed a vector-based 
convolutional neural network (CNN) for distinguishing 
characteristics of iPSC colonies. Waisman et al. [7] used CNN 
for accurate cellular morphology recognition based on cell 
staining technique. 
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Fig. 1. Flow chart of iPSCs clone analysis under microscope manually. A is 
the view of iPSCs culture medium under microscope. B is the magnified view 
of specific area in A. (a) to (f) in C is the iPSCs colonies. Researchers have to 
find specific areas (B) containing iPSCs colonies under the whole view of A 
to make further analysis on iPSCs colonies (C).  

However, searching for iPSCs colonies under extremely wide 
microscopic view to prepare datasets for the above methods 
still brings overwhelming workload for researchers. Also, the 
cell staining technique leads to massive death of iPSCs. To 
solve these problems, we propose a noninvasive iPSCs 
colonies detection method via ensemble Yolo network from a 
self-collected bright-field microscopy dataset without using 
cell staining technique. 

Yolo network is famous for its excellent trade-off between 
detection accuracy and speed, especially the latest version 
Yolo v5 [8]. Enhanced by cross stage pyramid (CSP) structure, 
the backbone network Darknet53 named CSPDarknet53 used 
in Yolo v5 can not only ensure the network's strong feature 
learning ability, but also accelerate the detection speed of 
iPSCs colonies [8-10]. Feature pyramid network (FPN) [11], 
path aggregation network (PAN) [12] and spatial pyramid 
pooling (SPP) [13] module used in Yolo v5 can refine multi-
scale feature learning from CSPDarknet53 and enhance the 
receptive field of Yolo v5, which assists the detection of iPSCs 
colonies in various scales. 
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Fig. 2. (a) The detailed architecture of the basic Yolo network. 𝐶1 to 𝐶3 are feature maps at different levels generated by CSPDarknet53, 𝑃1 to 𝑃3 are coarse 

feature maps at different levels generated by FPN, 𝑁1 to 𝑁3 are feature maps at different levels generated by PAN. 𝐻1 to 𝐻3 are the multi-scale output of Yolo 

v5 head. (b) The proposed ensemble Yolo network for iPSCs colonies detection. Yolo v5 s, Yolo v5 m, Yolo v5 l indicate small, medium and large version of 
Yolo v5. NMS means Non-max Suppression algorithm. 
 

To get a more accurate iPSCs colonies detection result, we 
utilize model ensemble technique to reduce the generalization 
error of the iPSCs colonies detection [14]. Meanwhile, test-
time augmentation (TTA) techniques are used to further 
improve the performance of proposed method. Overall, the 
contribution of our works are as follows: 

1) We first introduce a noninvasive way on iPSCs 
colonies detection with the self-collected bright-field 
microscopy images; 

2) We combine ensemble learning with the state-of-the-
art objection detection algorithm Yolo v5 to achieve 
better iPSCs colonies detection result; 

3) TTA techniques are used in our proposed iPSCs 
detection method to further improve the performance. 

II. METHODS 

Fig. 2 shows the detail architecture of the proposed iPSCs 
colonies detection method. We adopt different versions of 
Yolo network as the basic iPSCs colonies detection network. 
Fig.2 (b) indicates the proposed model ensemble technique. 
Meanwhile, TTA techniques are used during detection time for 
more accurate detection results. 

A. Basic Object Detection Algorithm 

As shown in Fig. 2, we choose Yolov5 as the detection 
algorithm to locate iPSCs colonies in bright-field microscopy 
images. Yolov5 consists of 3 parts: backbone, neck and head. 
Compared to the original version of Darknet53 in Yolo 
network, CSPDarknet53 combines the CSP structure to reduce 
the repeated gradient information and improve learning ability 
of network. As illustrated in Fig. 3 (a), the basic block of 
CSPDarknet53 divides feature map of base layer 𝐶𝑖  into two 

parts 𝐶(𝑖,1)  and 𝐶(𝑖,2) along the channel dimension, 𝑖 = {1, 2, 3} 

represent the feature level of FPN or modified PAN. Part 2 
𝐶(𝑖,2)  will go through a Darknet53 block 𝐷 . The output of 

𝐷 will undergo the first transition layer 𝑇1 and concatenate 

with feature map 𝐶(𝑖,1)  coming from part 1 to undergo another 

transition layer 𝑇2 .A hierarchical feature fusion mechanism 

consisting of 1 × 1 convolutional layer, batch normalization 
layer and Mish activation layer [15]. The continuous and 
differentiable activation function in Mish layer is used in 
CSPDarknet53 to increase the accuracy of detector. Mish 
activation function 𝑓(𝑥) mathematically is defined as: 

𝑓(𝑥) = 𝑥𝑡𝑎𝑛ℎ(ln(1 + 𝑒𝑥)),                             (1) 

where 𝑥 is the output vector of the normalization layer before 
activation layer, ln  is natural logarithm, 𝑡𝑎𝑛ℎ  is hyperbolic 
tangent. 

The neck of Yolo v5 mainly consists of three parts: top-
down path FPN structure, modified bottom-up PAN structure 
by replacing shortcut connection to concatenate original PAN, 
additional SPP module. As shown in Fig.3 (c), FPN up-
samples the high level feature 𝑃𝑖+1  at a factor of 2 
concatenates the coarse feature map 𝐶𝑖+1 from CSPDarknet53 
to generate new feature map 𝑃𝑖 . Similar to FPN but in a 
different direction, the modified PAN block takes low level 
feature 𝑁𝑖  and a coarse feature map 𝑃𝑖+1  from lateral 
connection and generates the new feature map 𝑁𝑖+1. Fig. 3 (b) 
indicates the SPP module used in Yolo v5. The entire input 
feature 𝐶𝑖 will go through 3 max-pooling layers 𝑀1, 𝑀2, 𝑀3 , 
respectively. Then the outputs of those layers are concatenated 
together with 𝐶𝑖  to enhance the receptive field of the input 
feature map 𝐶𝑖 and generate the output feature map 𝐶′, which 
could enhance the model by fusing features at multi-scales. 

As illustrated in Fig. 2 (a), the head of Yolo v5 consists of 
three parts  𝐻1 , 𝐻2 , 𝐻3  at three different resolutions, which is 
the same as Yolo v3. The outputs for those three head will 
concatenate together and go through the NMS algorithm to 
generate final detection results.  

B. Model Ensemble 

Ensemble learning combines multiple learning algorithms 
for generating better predictive performance strategically. In 
order to take advantage of Yolo v5 network, we employ model 
ensemble technique for iPSCs colonies detection during 
inference time as illustrated in Fig.2 (b).  

3739



  

 

Fig. 3. Some basic block in Yolo v5 detection algorithm. (a) Basic block of 
CSPDarknet53; (b) SSP module; (c) FPN module; (d) Modified PAN block. 

First, we train small, medium and large versions of Yolo 
v5 network separately. Then we concatenate the outputs 
including the bounding boxes coordinates and confidence 
scores of these 3 models, which can minimize the missed 
detections of iPSCs colonies and retain higher confidence 
scores. Finally, the ensemble output will go through the final 
Non-max Suppression algorithm to generate better iPSCs 
colonies detection results by discarding objects with high 
overlap ratios and low confidence scores. 

C. Test-Time Augmentation 

Similar to data augmentation for the training set, TTA is an 
application of random transformations to the test images. In 
order to generate more precise detection results, we perform 
TTA techniques for our iPSCs test set. 

TTA techniques used in our experiments including left-
right flipping and scaling of images. First, the input images are 
being left-right flipped and scaling to 3 different sizes with the 
ratios of 1, 0.83, 0.67, respectively. Those augmented images 
will go through the Yolo network and generate united 
predictions. Then we de-scale and de-flip the outputs and 
concatenate them as the inputs of the final NMS algorithm to 
generate the final detection result of iPSCs colonies.  

III. EXPERIMENTS 

A. Experimental Setting-up 

In order to evaluate the performance of our proposed iPSCs 
colonies detection method, we collect bright-field microscopy 
images for about 25 days since we carry out the reprogrammed 
procedure. During the image acquisition process, the 
microscope magnification is set to 4 times, and the imaging 
mode is set as bright-field. We collect images at the same 10 
wells and select 527 available images with size 2048×2048 

pixels per day. We choose image data on the 18𝑡ℎ  day that 

could be labeled by our researchers for the following analysis, 
which is a much earlier time compared to the manual 
recognition time of researchers. Finally, the number of images 
we collected is 525, and we randomly divide them into training, 
validation and testing set at a ratio of 6:2:2. The summary 
information of collected iPSCs bright-field datasets of our 
experiments is given in Table 1. 

Table 1. Summary of the iPSCs colonies bright-field microscopy images. 

Data Number Object 
Train 315 1034 

Validation 105 310 

Test 105 322 

 

To solve imbalance problem in contrast and brightness of 
iPSCs bright-field microscopy images, we apply some data 
preprocessing methods to enhance the data as follows: 1) HSV 
color mode augmentation to adjust the contrast and brightness 
of images. 2) Random affine transformations including 
flipping, scaling and translation. Then, we resize all images to 
640×640 with bilinear interpolation. 

To evaluate the performance of all deep learning detection 
algorithm in a fair way, all hyper-parameters and settings are 
consistent in our experiments. The chosen optimizer during 
model training is “Adam” with the same learning rate 10-4. The 
number of epoch for training is set to 200, while the batch-size 
is 8. All models in this study are trained on single NVIDIA 
GeForce GTX 2080 Ti 24G graphic cards. 

B. Evaluation Metrics 

Several evaluation metrics for object detection are adopted, 
including precision (Pre), recall (Rec), F1 score (F1), and 
mean average precision at intersection over union threshold 
0.5 (mAP50). Pre, Rec and F1 score can illustrate the detection 
performance of foreground iPSCs colonies, while mAP50 has 
a more comprehensive ability for evaluating the foreground 
objects and background regions classification performance of 
the model. 

C. Experiment Results 

The iPSCs colonies detection results of ensemble Yolo v5 
network compared to the basic Yolo v5 network are present in 
Table 2. Model ensemble technique might lead to the dropping 
of precision, but obtains higher recall, F1 score and mAP50.  

Test-time Augmentation results are shown in Table 3. 
Compared to the experiment results in Table 2, TTA brings 
obvious improvement of precision, F1 score and mAP50, 
while the recall drops slightly. 

We also compare our proposed method with state-of-the-
art object detection methods including Faster R-CNN 
enhanced by ResNeXt101 and FPN, Cascade R-CNN 
enhanced by ResNeXt101 and FPN, Libra R-CNN enhanced 
by ResNet101 and FPN, RetinaNet enhanced by ResNeXt101 
and FPN, EfficientDet-D1, EfficientDet-D2 [16-21]. The 
results in Table 4 show that our proposed ensemble Yolo 
network with TTA has better comprehensive performance.  

IV. CONCLUSION 

In this paper, we propose an automatic iPSCs colonies 
detection method via ensemble Yolo v5 network and test-time 
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augmentation techniques. The experimental results based on 
the self-collected datasets show that model ensemble achieves 
better comprehensive performance of Yolo network. 
Moreover, test-time augmentation further improves the 
distinguishing ability of our proposed method. In the future 
work, we expect to explore a better ensemble model for iPSCs 
colonies detection and improve our test-time augmentation 
algorithm to get better performance. 

V. COMPLIANCE WITH ETHICAL STANDARDS 

We wish to confirm that there are no known conflicts of 
interest associated with this publication. This research study is 
approved by the ethical review board of the institute. 

Table 2. Model ensemble results of Yolo network. + means ensemble 
detection. Alphabet s, m, l means small, medium and large version of Yolo v5, 
respectively. 

Yolo v5 Precision Recall F1 mAP50 

s 0.889 0.823 0.854 0.864 

m 0.879 0.832 0.854 0.855 

l 0.882 0.842 0.861 0.862 
s + m 0.878 0.848 0.863 0.871 

s + m + l 0.858 0.863 0.860 0.873 

 

Table 3. Test-time Augmentation results of Yolo network. * means test-time 
augmentation. 

Yolo v5 Precision Recall F1 mAP50 

s * 0.892 0.822 0.856 0.877 

m * 0.875 0.847 0.861 0.879 
l * 0.891 0.838 0.864 0.868 

s + m + l *  0.894 0.841 0.867 0.898 

 

Table 4. Our proposed method compared to other state-of-the-art object 
detection methods. 

Method Precision Recall F1 mAP50 

Faster R-CNN  0.864 0.851 0.858 0.836 

Cascade R-CNN 0.845 0.845 0.845 0.829 
RetinaNet 0.883 0.823 0.852 0.805 

Libra R-CNN 0.840 0.863 0.851 0.831 

EfficientDet-D1 0.852 0.820 0.835 0.891 
EfficientDet-D2  0.869 0.848 0.860 0.819 

ours 0.894 0.841 0.867 0.898 

 

 

Fig. 4. Inference results visualization of the proposed ensemble Yolo network 
with test-time augmentation. The first raw is the images labeled by researchers. 
The second row is the corresponding detection results with confidence scores 
of our proposed method. 
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