
 

 

  

Abstract— This study investigated the effects of different 
center of mass (COM) of the grasping device and visual time-
delay on the information interaction between brain regions 
during five-finger grasping process. Nine healthy right-handed 

subjects used five fingers to grasp a special device in a virtual 
reality (VR) environment. Two independent variables were set 

in the experiment: the COM of the grasping device and the visual 
delay time. Place a 50 g mass randomly at five different 
directions of the grasping device base. The three levels of visual 
delay time appear randomly. The kinematics and dynamics and 
electroencephalogram (EEG) signals were recorded during the 
experiment. The brain network was constructed based on 
multiplex horizontal visibility graph (MHVG). Interlayer 
mutual information (MI) and phase locking value (PLV) were 
calculated to quantify the network, while clustering coefficient 
(C), shortest path length (L) and overall network efficiency (E) 
are selected to quantify the network characteristic. Statistical 
results show that when the mass is located in the radial side, 
during the load phase of grasping, the C and E is significantly 
higher than that in the proximal, ulnar and medial side, and L 
was significantly lower than that in the proximal and radial side. 
This shows that when grasping an object with a COM bias on 
the radial side, the process of brain feedforward control has 
higher level of information interaction and ability and it can 
build stronger sensorimotor memory. It is also found that the 
brain network features of theta, beta and gamma bands of EEG 
are positively correlated, especially between beta and gamma 
bands, which suggests there is a coupling relationship between 
different bands in information processing and transmission. 

Clinical Relevance— This study explains the neural 

mechanism of grasping control from the topological structure of 

the whole brain network level and the informatics. 

I. INTRODUCTION 

Grasping is a very important and common action of the 
hand and the completion of grasping is inseparable from the 
control of the brain. However, it has been proved that many 
reasons, such as fatigue and disease, will affect the normal 
function of hands [1,2]. The neural control mechanism of 
grasping is still not clearly revealed.  

While grasping an object, our brain is provided with a 
massive amount of information including proprioceptive, 
visual and tactile inputs that is processed by different neural 
mechanisms. Precision grasping requires a complex 
interaction between the feedforward mechanism, which 
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controls digit force to predict external load, and the feedback 
mechanism, which regulates digit force based on 
mechanoreceptor signals [3]. When grasping a symmetrically 
shaped object with asymmetrical center of mass (COM), 
symmetrical load forces are generated before lifting and 
quickly adjusted during lifting based on rapid sensory 
feedback loops [4]. Furthermore, the effects of visual 
feedback on motion planning and execution have been widely 
studied [5,6]. Previous studies have shown that visual delay 
not only altered the force scaling during lifting but also 
increased the perceived heaviness of lifted objects [7].The 
brain anticipates the expected event to compensate for the time 
lag between the visual information available to the brain and 
the current event when interacting with the environment [8]. 
In the primate visual system, feedforward influences are 
carried by theta band (4-7 Hz) and gamma band (31-70 Hz) 
synchronization, and feedback influences by beta band (14-30 
Hz) synchronization [9]. 

Electroencephalography (EEG) have a relatively higher 
time resolution, meaning that it has the ability to describe rapid 
changes in the brain over a short period of time. In recent years, 
the method of complex network analysis for time series has 
achieved remarkable development. Multiplex horizontal 
visibility graph (MHVG) has been shown to inherit the 
essence of signal correlation dynamics topologically and has 
been applied to EEG analysis [10].  

At present, the research on behavioral neurophysiology 
in which visual and tactile disturbances coexist is still lacking. 
So far, it is still unclear how sensorimotor mechanisms rapidly 
integrate multisensory feedback for online motor control and 
the neural modulation process has not been clearly explained. 
The purpose of this study was to investigate the effects of the 
COM of objects and visual delay on the brain functional 
networks during grasping. The brain functional network was 
constructed by multi-channel EEG, and the topology structure 
of the brain network was analyzed based on graph theory. The 
mutual information (MI) of networks obtained by MHVG [11] 
and phase locking value (PLV) were selected as eigenvalues. 
It is hypothesized that the external torque deflection and visual 
delay will cause changes in the brain information interaction 
and existence of visual time-delay will affect the perception of 
the deflection torque. 
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II. MATERIALS AND METHODS 

A. Subjects 

Nine right-handed subjects (age: 26.89 ± 3.98 years; 

height: 166.44 ± 5.13 cm; weight: 62.62 ± 10.64 kg; 4 males 

and 5 females) participated in the experiment. All subjects 
were strongly right handed (the Edinburgh handedness 

inventory scores were 95.56±8.46. All subjects had normal 

or corrected-to-normal vision, without history of disease or 
injury of the nervous, muscular, skeletal system or vestibular 
or cerebellar dysfunction. All the subjects were fully informed 
the purposes of this study and provided written consent prior 
to the experiment according to the protocols approved by the 
Institutional Review Board at Shandong University. 

B. Experimental Setup 

The experimental device is shown in Fig. 1. Unity3D 
software are used to provide a VR scene. The VR scene 
contained the 3D model of grasping device, desk and a 
suspended platform. The height difference between the 
platform and the desktop is 15 cm. The grasping device is 
described in detail in [12]. The five positions where the mass 
is placed are middle, right, back, front and left sides of the 
base of the grasping device. The three time-delay are no delay, 
delay 100 ms and 200 ms respectively.  

The EEG signals of 32 channels were recorded under the 
condition of electrode impedance less than 5 KΩ at a 
sampling frequency of 500 Hz. The sampling frequency of 
force/torque sensors is 1000 Hz and the sampling frequency 
of position sensor is 90 Hz. Use LabVIEW to record EEG, 
force and position data synchronously.  

C. Experimental Procedures 

Put the grasping device 30 cm from the edge of the table, 
aligned with the shoulder of the subject's right hand. Before 
the formal experiment, each subject underwent a practice 
experiment to get familiar with the virtual environment and 
experiment process.  

In this task, subjects were asked to lift the device 
vertically to the same height as the platform in view, and to 
hold it for 30 s as steady as possible during the hold phase. 
Nine grasps were performed at each position of the mass, and 
three times were repeated for each of the three time-delay 
levels. At the end of each round of nine experiments, the 
researcher manually changed the position of the mass on the 
base to change the COM without the subject's knowledge. The 
time-delay level was automatically changed by a random 
sequence generated by the program. A total of 45 formal 
experiments were conducted for each subject. The subjects 
took 15 s off after each trail of grasping and took a 3 to 5 
minutes rest at the end of each round of nine experiments.  

D. Data Processing  

EEG signals were preprocessed using software 
BrainVision Analyzer 2.1. EEG signals were band-pass 
filtered between 4 and 70 Hz and notch filtered at 50 Hz. 
Independent component analysis (ICA) was used to remove 
eye movement artifacts in the EEG signals. Forces and 
position signals were filtered with a fifth order lowpass 
Butterworth filter with a cut-off frequency of 30 Hz. The theta 
(4-7 Hz), beta (14-30 Hz) and gamma (31-70 Hz) bands of 

EEG were extracted by finite impulse response (FIR) filter. 
Some kinetic parameters and time parameters are calculated: 
load force (LF) which are the sum of the vertical forces of five 
fingers, tLF0 (the time when LF is greater than 0.1 N), tLw (the 
time when LF is equal to the weight of the device) and t0 (the 
time when the height of the object is lifted to a height greater 
than 0.5 mm) are calculated. The period from tLF0 to tLw is 
considered to be the load phase of the initial grasping 
movement [13]. The initial movement of an object during 
lifting is a key visual time point. In this study, different 
algorithms and eigenvalues were selected to construct the 
network for the EEG of these two phases: load phase and 1 s 
after t0.  

In order to build the brain function network, use the 
following principles, each channel of EEG is converted to a 

layer of HVG：for a time series X:  t 1,...,
x

i i N
X

=
= , two time 

points i  and j  are linked if the associated data ( )x i  and 

( )x j  have horizontal visibility, i.e. if any value of  

intermediate data ( )x k  satisfies the ordering relation

( ) ( ) ( ) x k inf x i ,  x j , k :  i k j  . Each channel of EEG can 

be converted to one HVG, thus the MHVG can be obtained 
from 32 channels of EEG.  

Figure 1. Experiment apparatus: (a) An EEG Acquisition device (Brain 
Products Inc., LIVEAMP, Germany). (b) The VR helmet: a new 
consumer-grade head-mounted display (professional-grade VR system, 
HTC Vive, Tai Wan, China). (c) The grasping device. It is equipped 
with five six-dimensional force/torque sensors (Nano17, ATI Industrial 
Automation, Apex, NC, USA) to record the force and moment signals 
of five fingers in the process of grasping. The position sensor is also 
installed. (d) The base of the grasping device can be placed with 50 g 
mass in different directions. 

 

Figure 2. The time line of a trial. The “lift” stage is to touch the device 
and lift it to the target height after hearing “start”, the “hold” stage is to 
hold it steady, and the “release” stage is to put it back and release it after 
hearing “over”. 
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We selected the inter layer mutual information as the 

eigenvalue for the brain network during load phase. ,
MI   is 

defined as: 
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where [ ] [ ]( , )P k k   is the joint probability distribution to 

count the number of nodes that have degree [ ]
k
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and degree [ ]

k


 at layer   . 

In addition, we used a sliding window to construct 
dynamic brain networks of theta, beta and gamma frequency 
bands during the 1 s period after the object initial movement. 
The length of this sliding window was 100ms and the step size 
was 10ms. Select PLV to quantitative dynamic brain network 
characteristic. 

For the continuous time signals ( )x t  and ( )y t , the phase 

synchronization relationship can be expressed by the phase 
locking value. 

2 2

  cos ( ) sin ( )xy xyt t
PLV t t=  +   (2) 

( )  ( ) ( )xy x yt t t =  −  
(3) 

xy is the instantaneous phase difference of ( )x t  and ( )y t  

analytic signals; ( )x t  and ( )y t  are the instantaneous 

phases of ( )x t  and ( )y t  analytic signals respectively.  

The nodes of the complex brain networks constructed are 
electrode points, with the parameters mentioned above as 
edges. The performance of the above two kind of networks 
was measured by following parameters in brain functional 
network based on graph theory, including average weighted 
clustering coefficient (C), average weighted characteristic 

path length (L) and overall network efficiency (E). it  is the 

number of triangles of node i and ik  is the degree of node i . 

ijd  is the characteristic path length between node i  and j  

while N is the number of nodes. 

The parameters were calculated using MATLAB 2020b 
(The Mathworks, Natick, MA, USA) with customized code. 

E. Statistical Analysis  

Statistical analyses were performed using SPSS 25 (SPSS 
Inc., Chicago, IL). Two-way ANOVA was used to examine 
the differences of the C, L and E of brain functional networks 
between different COM position and different levels of visual 
delay time. Partial correlation analysis is a method for 
measuring the linear correlation between two variables in 

multivariate variables under the condition of controlling the 
influence of other variables and we used it to analyze the 
correlation of three band of EEG network parameters. A p 
value of less than 0.05 was considered statistically significant. 

III. RESULTS 

The brain functional network parameters of different 
COM objects during load phase of grasping were significantly 
different. Fig. 3 shows the two-way ANOVA results of the C, 
L and E of the brain function networks constructed by MI 
under different experimental conditions. When the subjects 
grasped an object with the COM tilted to the left side, the 
levels of C and E in the brain functional network were 
significantly higher than those in back, middle and right (C: F 
= 3.278, p < 0.05; E: F = 3.283, p < 0.05), and L was 
significantly lower than those in back and right (L: F = 2.644, 
p < 0.05). There was no statistical difference in the 
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Figure 3. Results of parameters of MI brain functional network of full 
band EEG during the load phase. * Significant difference between the 
corresponding COM position groups (p < 0.05). 

 

Figure 4. Correlation between pairwise parameters of PLV brain networks 
in the theta, beta and gamma bands during the 1 s period after the object 
initial movement. (Partial correlation analysis takes time-delay and COM 
as control factors, and scatter diagram takes three time-delay level as 
variables to fit three lines.) 
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characteristics of brain functional networks constructed by MI 
between the three conditions of no visual delay and delay of 
100 ms and 200 ms (C: p = 0.565; L: p = 0.437; E: p = 0.546).  

We found a correlation between the network parameters 
of the three bands. Fig. 4 shows the partial correlation analysis 
results of the C, L, and E networks of the brain function 
networks constructed by PLV. The results show that the 
parameters of the three bands are positively correlated, and 
especially the beta and gamma bands are strongly correlated. 

IV. DISCUSSION 

The purpose of this study was to investigate the effects of 
external deflection torque and visual delay on brain functional 
networks during five-finger grasping. We find that when the 
COM of an asymmetrical object is inclined to the thumb side, 
during the load phase of lifting, the brain has a higher ability 
of information interaction. There is a mutual coupling 
relationship among the brain functional networks of theta, beta 
and gamma bands. 

The load phase is considered to be the period of time 
between digit early contact and object lift onset. In this period, 
the load force is applied in an expected manner before 
feedback about the object's properties is obtained. This 
expected force regulation is based on sensorimotor memory 
and is based on online feedback about the fingers position as 
the position of the finger changes [13,14]. Higher MI 
represents more information interaction. The C and L are two 
indicators representing functional integration and separation in 
the functional brain network respectively, while E is often used 
to characterize the efficacy of the network for information 
interaction globally. When the COM is to the left, the MI 
network has higher C, shorter L and higher E which indicates 
that the brain has stronger information processing ability and 
stronger ability to maintain the balance between functional 
integration and separation as well as higher information 
transmission efficiency in the brain. The control of the five-
finger follows a two-tier hierarchy, the lower level being the 
individual fingers (index, middle, ring, little), and the higher 
level consisting of the thumb and virtual finger (the four 
fingers combined) [14]. The particularity of the brain network 
when the COM is tilted to the thumb side, it is speculated that 
this may be related to the control strategy of the higher level. 
In a word, the reason for the above difference when the COM 
is on the left side may be inferred that the brain activity is more 
active, recruiting more neurons. This may be because the 
human brain is more sensitive to the thumb side torque 
perception and has stronger sensorimotor memory. In this 
study, we did not find the effect of visual delay on the selected 
network parameters, and speculated that this might be related 
to the load phase of grasping was not sufficiently time-
sensitive or the delay time we set was too short. Future studies 
will continue to explore the effects of visual time-delay. 

The brain functional network constructed by PLV reflects 
the phase-phase coupling model of the brain. Low frequency 
oscillations are used to communicate between different brain 
regions, while high frequency oscillations are spatially local 
and reflect local cortical processing [15]. The coupling 
between beta band and other frequency bands is usually seen 
in exercise experiments or Parkinson's patients. Gamma band 
is associated with visual awareness, responding to target 

features such as size and spacing of visual stimuli. The results 
of network feature correlation analysis among different 
frequency bands showed a significant positive correlation, 
which indicated that there was cooperation among the three 
bands, and there was a coupling relationship between 
information processing and transmission in the brain 
functional network. In particular, the strong positive 
correlation between beta and gamma bands suggested a 
stronger functional correlation between beta and gamma bands 
in this task. However, in this study, we only analyzed the 
pairwise correlation between the network parameters of the 
three bands, and we will use other methods such as Granger 
causality to discuss the relationship between multiple variables.  

V. CONCLUSION 

In this study, from the perspective of brain functional 
network, we found the special characteristics of the brain when 
the right hand grasps an object with the center of mass tilted to 
the thumb side. Meanwhile, we also found the correlation 
among the EEG functional networks with different frequency 
bands. This study provides a unique insight into the neural 
control mechanisms involved in grasping. 
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