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Abstract—Image decoding using electroencephalogram (EEG) 

has became a new topic for brain-computer interface (BCI) 

studies in recent years. Previous studies often tried to decode 

EEG signals modulated by a picture of complex object. However, 

it’s still unclear how a simple image with different positions and 

orientations influence the EEG signals. To this end, this study 

used a same white bar with eight different spatial patterns as 

visual stimuli. Convolutional neural network (CNN) combined 

with long short-term memory (LSTM) was employed to decode 

the corresponding EEG signals. Four subjects were recruited in 

this study. As a result, the highest binary classification accuracy 

could reach 97.2%, 95.7%, 90.2%, and 88.3% for the four 

subjects, respectively. Almost all subjects could achieve more 

than 70% for 4-class classification. The results demonstrate 

basic graphic shapes are decodable from EEG signals, which 

hold promise for image decoding of EEG-based BCIs. 

I. INTRODUCTION 

A brain-computer interface (BCI) measures the brain 
activity and converts it into artificial output that can replace, 
restore, enhance, supplement, or improve a natural neural 
output [1]. BCIs could provide communication and control 
channels that do not depend on the brain’s normal output 
peripheral nerves and muscles [2]. With the advantage of 
noninvasiveness, high temporal resolution and ease of use, 
electroencephalogram (EEG) is the most welcomed 
neuroimaging method for BCIs. 

The visual perception plays a major role in feeling the 
outside world, and most of the information perceived by 
human comes from vision [3]. The visual evoked potentials 
(VEPs) were utilized by researchers to design a number of 
BCIs with large instruction set and high interaction speed [4, 
5]. However, these systems focused on decoding the point at 
which the users were staring. The functional magnetic 
resonance imaging (fMRI) researches have proved that the 
visual stimulus in the two-dimension space could activate a 
corresponding pattern in the visual cortex at voxel level, 
which could be decoded by machine learning [6]. For example, 
Horikawa et al. reproduced the visual scenes by constructing a 
voxel-level regression model with the visual features extracted 
from human fMRI brain activities [7]. 
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Some studies have explored the feasibility to decode  the 
pictures of complex object from the visual evoked EEGs. For 
example, Zheng et al. proposed an automated visual 
classification framework, and realized classification of EEGs 
evoked by images [8]. Rashkov et al. introduced a closed-loop 
system that reconstructed the observed images from the EEGs 
[9]. However, physiological studies have demonstrated that 
the activation of primary visual cortex could be influenced by 
the color, the contrast, and the location etc [10], and most of 
the above EEG studies used images of real objects (e.g. the 
ImageNet [11] dataset) as the stimulation, of which the 
characters were complex and made it difficult to understand 
the influence of each factor on EEG signals. Therefore, it is 
necessary to verify the recognizability of EEGs evoked by  
basic graphic shapes. 

This study aimed at classifying EEGs induced by different 
simple spatial patterns, i.e. ignoring the influence of other 
image factors, and giving an insight into decoding compound 
shapes in the future. To this end, a same white bar with eight 
different spatial patterns was designed as the stimulation, and 
a model based on convolutional neural network (CNN) and 
long short-term memory (LSTM) was built for pattern 
recognition. 

II. METHODS 

A. Experimental Paradigm 

The visual stimuli were constituted by the same white bar 
with different positions or orientations. Each spatial pattern 
subtended 6° of visual angle, as shown in Fig. 1(A). During 
the experiment, the subject was asked to focus on the dot at the 
center of the screen. The square wave stimulation method was 
used to generate flickers using the PsychoPy. 

This study designed eight spatial patterns: Up (horizontal), 
Middle (horizontal), Down (horizontal), Left (vertical), 
Middle (vertical), Right (vertical), Oblique 1 (45°), Oblique 2 
(135°), as shown in Fig. 1(B). It should be noted that some of 
these patterns stimulated both the central and lateral visual 
field, and the central visual field could produce stronger VEPs 
that might submerge the weak VEPs of the lateral visual field. 
Hence, a black circle with a radius of 2 cm appeared at the 
center of the screen to reduce the influence of central VEPs 
during the experiment. 

During the experiment, eight spatial patterns were 
randomly presented, and flashed at the frequency of 2 Hz. 
Each trial started with a rest period for 2 s, followed by a task 
period for 4 s. A checkerboard would appeared for 0.5 s during 
the rest period, ensuring that brain activities driven by 
previous pattern were “cleared”. 
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B. Experimental Procedure 

Four subjects (one male and three females) aged 22 to 25 
years old participated in this study. All subjects had normal or 
corrected vision. The study was conducted in accordance with 
the Declaration of Helsinki and the experimental procedures 
were approved by the Institutional Review Board at Tianjin 
University. Written consent was obtained from each subject 
after giving a detailed explanation of the experiment. The 
subjects were seated at a distance of about 80 cm from a 
23-inch  liquid-crystal display (LCD) monitor with a refresh 
rate of 60 Hz and were required to gaze at center of the screen. 

In order to meet the data demand for neural network, each 
subject performed three experiments within a week. Each 
experiment contained 26 blocks, in which 24 trials with each 
spatial pattern appearing three times were presented in a 
random order. The relax time between blocks was determined 
by the subjects. 

C. EEG Recording and Processing 

A Neuroscan SynAmps2 amplifier and a 64-Channel 
Quick-Cap were used during the acquisition process. The 
Ag/AgCl electrodes of the Quick-Cap were placed at standard 
positions of international 10-20 system. All channels took the 
vertex as the reference electrode. The EEG data from 
twenty-one channels around the occipital area (P7, P5, P3, P1, 
PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, 

CB1, O1, OZ, O2 and CB2, see Fig. 1(A)) were used for 
analysis. A 50 Hz notch filter and band-pass filter (0.1~200 Hz) 
were used during the EEG acquisition, and the sampling 
frequency was set to 1000 Hz. 

In pre-processing, the data were band-pass filtered to 1~70 
Hz with an infinite impulse response (IIR) filter and 
standardized with the z-score method. In this study, each trial 
was separated into 8 times of flash (2 Hz × 4 s), and the EEG 
epochs were extracted in [50 ms, 350 ms] according to the 
onset of the flash, thus generating 24 epochs for each spatial 
pattern. The classification test was performed with a 10-fold 
cross-validation method. 

D. Feature Analysis and Target Recognition 

This research employed a deep learning model based on 
CNN and LSTM. As one of the representative algorithms of 
deep learning, CNN is widely used in many fields like 
computer vision and natural language processing. Generally, 
CNN includes convolutional layer, batch normalization (BN) 
layer, activation function, pooling layer and fully connected 
layer. Convolution can be considered as an effective method 
to extract features. BN can adjust the input of each layer to a 
standard normal distribution with a mean value of 0 and a 
variance of 1, which could solve vanishing gradient problems 
in the neural network. The features which CNN learns are 
hierarchical composing high-complexity features out of 
low-complexity, which was more efficient than learning 
high-complexity features directly [12].   

LSTM is a special kind of recurrent neural networks 
(RNNs) [13], which was proposed by Hochreiter and 
Schmidhuber in 1997 [14]. The traditional RNNs extract 
information from time dimension with cyclic kernel. However, 
vanishing gradient or gradient explosion problems caused by 
multi-stage backpropagation make RNN difficult to remember 
long-term dependencies. LSTM introduced three gates to 

solve the problem: input gate ti , forget gate tf  and output 

gate to . The interaction between the gates and inputs are 

shown in Eqs. (1)-(3):  

   1,t i t t ii W h x b     (1) 

   1,t f t t ff W h x b     (2) 

   1,t o t t oo W h x b     (3) 

In the above formulas tx  is the input feature of the current 

moment, 1th   is the short-term memory of the last moment. 

iW , 
fW , and oW  are parameter matrices, and ib , 

fb , ob  are 

bias items.   is the Sigma activation function, which makes 

the threshold range between 0 and 1. 

By using a gate mechanism to control the circulation and 
loss of information, LSTM could remember long-term 
information. It is beneficial for us to analyze long sequences of 
EEG signals from the time dimension. 

In this study, an automated visual classification model 
based on CNN and LSTM was proposed. The model consisted 
of a 5-layer convolution network, a 3-layer long-short memory 
network and one fully connected layer with SoftMax 

Figure 1.  Experimental paradigm. (A) The sketch map of stimulation. 

(B) Eight kinds of spatial patterns.  

6°

80cm

(A)

(B)

Up (horizontal) Middle (horizontal) Down (horizontal)

Left (vertical) Middle (vertical) Right (vertical)

Oblique 1 (45°) Oblique 2 (135°)
 

813



  

activation function, as shown in Fig.2. The number of kernel 
and the kernel size were determined based on the preliminary 
experiments. In this study, one-dimensional convolution 
kernels were used to extract features. Batch normalization and 
dropout were implemented which could lead to faster training 
of the network as well as better conservation of information 
throughout the hierarchical process, and avoid overfitting of 
the network based on their nature [12]. The batch 
normalization was performed after the third and fifth layers of 
convolution, which also solved vanishing gradient problems 
by transforming the input of each layer into a standard normal 
distribution with a mean value of 0 and a variance of 1. The 
50% dropout was carried out after the first batch normalization 
and the third LSTM layer. The size of batch was set as 128. 

 

As an important parameter in deep learning, the learning 
rate controlled the optimization speed and determined whether 
the network can reach the optimal model. Excessive large or 
small learning rate would lead to non-convergence or local 
optimum of the model. To this end, a fixed step decay strategy 
was adopted to adjust the learning rate. After N epochs, the 
learning rate became half of the original, where N was 
adjusted according to different data sets. 

The eight spatial patterns described in the experimental 
paradigm were respectively numbered 1~8, of which 2, 5, 7, 8 
were displayed at the center of the screen, and 1, 3, 4, 6 were 
displayed around the screen. It can be seen that 2, 5, 7, 8 had 
different orientations (0°, 90°, 45°, 135°), and 1, 3, 4, 6 had 
different positions (up, down, left, right). In order to explore 
the specific response of EEGs to different spatial patterns, 
eight targets were first combined in pairs, and divided into 
three groups. Group A: both the two targets contain the central 
vision field (2 vs. 5, 2 vs. 7, 2 vs. 8, 5 vs. 7, 5 vs. 8, 7 vs. 8). 
Group B: one of the two targets contain the central vision field 
(2 vs. 1, 2 vs. 3, 2 vs. 4, 2 vs. 6, 5 vs. 1, 5 vs. 3, 5 vs. 4, 5 vs. 6, 
7 vs. 1, 7 vs. 3, 7 vs. 4, 7 vs. 6, 8 vs. 1, 8 vs. 3, 8 vs. 4, 8 vs. 6). 
Group C: neither target contains a central vision field (1 vs. 3, 
1 vs. 4, 1 vs. 6, 3 vs. 4, 3 vs. 6, 4 vs. 6). 

To better evaluate the performance of the BCI system, four, 
six, and eight targets were selected from eight spatial patterns 

in turn for verification. Since there are 4

8 =70C  combinations 

of four different targets, and 6

8 =28C combinations of six 

different targets, which will greatly increase the time of testing, 
only part of the combinations were selected based on the 
results of binary classification.  

In order to further verify the separability of EEGs induced 
by basic graphic shapes, a visualization method of pixel-wise 
input attribution called layer-wise relevance propagation (LRP) 
which has been used in understanding the internal 

representation and decision processes of the networks was 
adopted. Specifically, the layer of LSTM was visualized and 
the relevance maps of 500 trials were averaged. Meanwhile, 
the data were down-sampled to 500Hz to get better 
visualization effects. 

III. RESULTS AND ANALYSIS 

A. The average accuracy of binary classification  

Fig. 3 shows the average accuracies of each subject for 
group A, group B, and group C. As can be seen, the average 
accuracies of group B were 93.8%, 88.6%, 84.8%, and 83.9%, 
respectively. The correct recognition of basic graphic shapes 
meant that the proposed BCIs system could distinguish the 
EEGs evoked by the basic elements, which was in line with 
the transmission mechanism of visual information [15].  

 

In addition, it could be seen that the average accuracies of 
group B among the four subjects were higher than those of 
group A and group C, which showed that there is a greater 
difference between EEGs evoked by the central and lateral 
visual field. Besides, Group A had the lowest average 
accuracies among the three groups except for subject 2. This 
might be due to the fact that the stimulus at the central visual 
field could elicit stronger VEPs than that at the peripheral 
visual field [16]. Although there was a black circle at the 
center of the screen in this study, the interference caused by 
the central visual field had not been completely eliminated, the 
performance of the classifier to discriminate the weak 
peripheral VEPs evoked by different orientations might be 
degraded. Further experiment needs to be designed to verify 
the above conjecture. 

B. Performance of multiple classes recognition 

Fig. 4 displays the recognition accuracies of different 
number of targets with the proposed model. The spatial pattern 
combinations with the highest accuracy were selected for each 
subject considering the individual differences. 

 

Table 1. Selected combinations of each subject 
 Class_2 Class_4 Class_6 Class_8 

Sub_1 1/8 1/3/6/8 1/3/5/6/7/8 1/2/3/4/5/6/7/8 
Sub_2 3/8 2/4/6/8 1/3/4/5/6/7 1/2/3/4/5/6/7/8 

Sub_3 4/8 3/4/6/7 1/4/5/6/7/8 1/2/3/4/5/6/7/8 

Sub_4 2/6 1/3/5/7 1/3/4/5/6/8 1/2/3/4/5/6/7/8 

 

Figure 2. The visual classification model based on CNN and LSTM 
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Figure 3. The average correct rate of each subject in group A, group B, 

and group C. 
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Compared with the binary classification results, the 
accuracies decreased as the number of categories increased. 
Notably, subject 1 showed an accuracy of 73.4% for 8 targets 
recognition, and almost all the subjects could achieve 
accuracies around or more than 70% for 4 targets recognition. 
The results demonstrated the effectiveness of the proposed 
paradigm and algorithm, while there was room for the 
improvement of the model. 

 

Fig. 5 shows visualizations of the relevance of each 
sampling point. The ordinate represents twenty-one channels, 
and the abscissa represents sampling points. The color 
represents the contribution or correlation of the sampling point 
to the target output node. It’s obvious that the relevance maps 
produced by LRP for each spatial pattern were different from 
each other. This proved that  basic graphic shapes could 
induce specific EEGs from the perspective of the data point 
relevance. 

 

IV. DISCUSSION AND CONCLUSION 

This study investigated the separability of EEGs induced 
by a same white bar with eight different spatial patterns. Eight 
targets were decoded through a model constructed by CNN 
and LSTM. The results convinced us of the recognizability of 
EEGs evoked by basic graphic shapes. In future work, more 

subjects will be recruited for results with statistical 
significance, and the efforts will be put into exploring the 
connection between the EEGs evoked by combined elements 
and basic elements, as well as developing more efficient deep 
neural networks for EEG processing. The in-depth research of 
EEGs evoked by basic shapes could benefit our understanding 
of visual neural activities and provide new coding strategies 
for future BCIs. 
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Figure 5.  Visualizations of the relevance of each sampling point 
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Figure 4.  Performance of the proposed BCI system.  
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