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Abstract— Patients with Parkinson’s disease (PD) can be
divided into two subtypes based on clinical features, namely
tremor-dominant (TD) and postural instability and gait dif-
ficulty (PIGD). Detection of PIGD symptoms is crucial for
early diagnosis of PD and timely clinical intervention. However,
patients at the early stage may not exhibit obvious motor
dysfunctions during normal straight walking leading to difficul-
ties in PD identification. Researchers have found that patients
would show significant motor deteriorations in turning due
to their cognition limitation. Therefore, turning detection is
essential for quantitative motion analysis in the gait assessment
of PD patients. In this study, we proposed a novel inertial-
sensor-based algorithm for turning detection. Ten healthy young
participants were enrolled in the experiment where they were
required to walk along a 7-meter pathway with two 180 degree
turns at their comfortable walking speed. Five inertial sensors
were attached to the upper trunk, the shank and the foot of
both legs. The algorithm performance was validated using an
optical motion capture system for reference and two sensor
combination options (upper trunk and shank sensors, upper
trunk and foot sensors) were compared. The results showed
that the proposed algorithm achieved accuracy over 98% for
identifying the turning state of both legs. The integration of the
upper trunk and foot sensors had no significant effect on the
detection accuracy compared to that with the use of the upper
trunk and shank sensors. Our algorithm has the potential to
be implemented in the motion analysis model for complicated
gait tasks, which has great potential in the early diagnosis of
PIGD.
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I. INTRODUCTION

Parkinson’s disease (PD) is the world’s second most
common neurodegenerative disorder [1]. Patients are divided
into two subtypes based on clinical features, namely tremor-
dominant (TD) and postural instability and gait difficulty
(PIGD). Compared to the TD subtype, PIGD patients have a
worse prognosis and the disease may develop more rapidly
[2]. Detection of early PIGD symptoms is crucial for early
diagnosis of PD and timely clinical intervention. However,
the PIGD symptoms in early PD are mild and may vary
among different patients.
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Performance-based tests, such as Time Up and Go (TUG)
test, assess patients’ mobility on transitions, gait and risk
of falling. However, its clinical use is only timed scores
that do not provide information about the pattern or quality
of the motion, limiting its usefulness in assessing disease
progression. It requires objective technologies to increase
the accuracy of the assessment. Motion analysis technology
provides an objective approach to measure subtle movement
changes and quantitatively describe motor symptoms. Inertial
measurement units (IMUs) have been widely accepted in
gait assessment due to their portability, low cost and uncon-
strained environment requirement [3], [4]. Studies showed
that PD patients may exhibit a reduced range of motion and
muscle strength at the lower limbs resulting in reduced gait
speed, step length [5], [6].

Mirelman et al. [7] demonstrated that PIGD patients
exhibited gait slowness and abnormal postural adjustment
which may happen at the early stage of disease, even before
the appearance of gait disorder during walking. Dual-task
and complex gait tasks may show promise for detecting
patients’ abnormal motion functions compared to a straight
walking task [8]. As a common gait task for daily life, turning
is accomplished by a top-down sequence of body segment
rotations requiring quick balance and posture adjustment [].
Patients with PD exhibit poorer balance and impaired limb
coordination during turning compared to walking which may
result in a slower turning speed and wider turns [9]. Gait
assessment of turning has drawn more attention in the field of
PD motor dysfunctions [10]–[12]. However, to the authors’
knowledge, there is no existing motion analysis model that
enables to quantify gait performance for both normal gait
and turning tasks, in which, automatic turning detection is
crucial for further data analysis.

In this study, we proposed a novel algorithm for turn detec-
tion based on inertial sensors. The two-layers model enables
detection of the left and right turning using the course angle
changes of body segment during gait cycles. The algorithm
performance was evaluated in the experiment with optical
reference. The effect of sensor fusion options (upper trunk
and foot sensors, upper trunk and shank sensors) on the
turning detection was investigated while the classification
accuracy of left- and right-sided turning was compared. The
rest of the paper was structured as below: The Section II de-
tailed a two-layer model that comprises gait event detection
and a rule-based machine learning approach with a fixed
threshold for turning detection. The validation experiment
and data analysis were described in the Section while results
and conclusion were demonstrated in the Section III and IV.
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II. METHODS

A two-layer model was developed based on a rule-based
machine learning approach in this study. A gait event de-
tection algorithm in the top layer determines the heel off
(HO), heel strike (HS) events while the turning state can
be characterized with the course angle changes of body
segments between the HO and successive HS at the bottom
layer of the model.

A. Gait event detection

The pitch angle θpitch measured from the sensor placed on
the foot was used in our proposed gait event detection algo-
rithm. The first-order differentiation of θpitch was calculated
to obtain the angular velocity ωpitch that was then filtered
using a 3rd order zero-lag high-pass filter (fHC = 1Hz).
The foot pitch angle θpitch was filtered by a 12th order zero-
lag low-pass Butterworth filter with a cut-off frequency of
5Hz. Three gait events were distinguished, namely the mid-
swing (MSw), HO and HS. The MSw was determined as a
reference time instant while the HO and HS were assumed
to occur in a time window with a certain length before and
after the MSw:

• MSw: the MSw was determined with the maximum
point of foot angular velocity.

• HO: If a MSw was detected, the HO occurred at the
moment when the local minimum point of the foot pitch
angle within a 0.7-second time window before the MSw
was found.

• HS: the HS occurred following the MSw when the foot
pitch angle reached the local maximum within a 0.5-
second time window.

B. Turning state detection

Fig. 1 shows the course angles of sensors that were placed
on the upper body, the left shank and the left foot of one
participant when he performed straight walking followed by
180 degree turns in 5 seconds. It can be observed that a
significant change in the course angles occurs during the
turning. The change of course angles between the HO and
next HS events are calculated based on gait phase detection:

M θi = θi,HO − θi,HS (1)

Where i represents the foot, shank and upper trunk sensors
respectively. Two sensor combination options are proposed
where the upper trunk sensor is integrated with the foot or
shank sensor (the upper trunk and shank sensors, the upper
trunk and foot sensors). The gait stride is regarded as a turn
if:

| M θUT | > 20and| M θFO/HS | > 15. (2)

C. Experimental protocol

The study was approved by the Ethics Committee of
Tianjin University and was conducted in the Motion Rehabil-
itation Laboratory of Tianjin University. Ten healthy young
participants (5 males and 5 females, age 23.00± 0.82 years
old, weight 60.71±11.25 kg, height 168.00±9.40 cm) were

Fig. 1. The course angles of sensors placed on the upper body, the left
shank and the left foot of one participant when performing the straight
walking followed by 180 degree turning within 5 seconds. The heel strike
(HS) and heel off (HO) events were detected and marked in the plots.

enrolled in the experiment. All participants provided written
informed consent prior to the experiment.

As shown in Fig. 2A, a participant wore five inertial
sensors (myoMOTION™ , Noraxon, US) that were placed at
the upper trunk, shank and foot respectively. The upper trunk
sensor was attached at the level of the third lumbar vertebra
in order to closely match the centre of mass movement during
gait. The shank sensor was placed at the inner side of the
tibia 10cm below the knee bilaterally for minimizing relative
artificial movement between the skin and the bone. The foot
sensor was placed at the 3rd metatarsal of the foot. The
Vicon optical motion capture system (Vicon MX Giganet,
Oxford Metrics Ltd., UK) was used as the reference for
algorithm validation. The straight walking and turning tasks
were segmented using the marker trajectories of the heel and
toe. A static trial was firstly captured while the participant
standing still with a natural posture. Then, the participant
was required to perform a complex gait task comprising
of straight walking and 180 degree turning as shown in
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(A)

(B)

Fig. 2. (A) The participant wore five inertial sensors placed on the upper
trunk, shank and foot of both legs while the retroreflective markers were
placed on the heel and toe for identifying the straight walking and turning
as the reference. (B) The participant was required to walk along the 7-meter
pathway with two 180 degree turns for 20 cycles.

Fig. 2B along a 7-meter path at his/her comfortable speed and
completed 20 cycles. The inertial data and marker trajectories
were collected synchronously at a sampling rate of 100Hz.

D. Data analysis

The proposed algorithm was programmed using MAT-
LAB2019b (The MathWorks, Inc., Natick, MA, US). A total
of 1193 gait strides on the left side and 1107 gait strides
on the right side were extracted. The accuracy of gait event
detection was evaluated firstly based on which the gait strides
were classified into two gait tasks: straight walking and turn-
ing. The algorithm performance using the two sensor fusion
options were evaluated in terms of sensitivity, specificity and
accuracy and compared with the use of the Student’s t-test. A
p-value less than 0.05 was considered statistically significant.

III. RESULTS

The Vicon system was used as a reference system to verify
gait events (HS and HO) and gait tasks (straight walking
and turning). The gait phase detection algorithm obtained
an accuracy of 100% to identify the HS and HO events for
all participants’ trials. As shown in TABLE I, the average
time difference between the detected gait phases and Vicon
reference were less than 5ms for the HO and 30ms for the
HS.

The algorithm performance of the turning detection based
on two sensor fusion strategies was analyzed. It should be
noted that turning states were detected for the left and right
legs respectively in this study. For an instant, the course

TABLE I
RESULTS OF TIME DIFFERENCE BETWEEN THE DETECTED GAIT PHASES

AND VICON REFERENCE

Leg side HO (ms) HS (ms)

Left 4.73± 14.06 29.86± 23.32

Right 0.04± 16.34 14.94± 30.07

angles of sensors placed on the upper trunk and left foot
(or shank) were used for determining the left turning state.
As shown in Fig 3 and TABLE II, our proposed algorithm
obtained a good accuracy for turning detection (> 97%)
based on both sensor fusion methods. The sensor fusion
strategy had no significant effect on the classification per-
formance. However, we observed that the turning detection
performance was slightly worsened on the right side (>
98.25%) compared to that on the left side (> 99.40%). There
was a significant difference in the classification accuracy
of the right and left side turning (p < 0.05). This may
be because all participants performed only left 180 degree
turnings in the experiment. As the outer leg, the right leg
exhibited higher gait kinematics variability during gait so that
more right-turning states were misclassified as right walking
(Fig 3).

Fig. 3. Recognition confusion matrix of straight walking and turning
respectively on the left and right side with the use of two sensor combination
strategies: (A) Upper trunk and left foot sensors; (B) Upper trunk and right
foot sensors; (C) Upper trunk and left shank sensors; (D) Upper trunk and
right shank sensors.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a novel two-layer model
that enables to detect the turning during gait. The concept
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TABLE II
CLASSIFICATION PERFORMANCE ON DETECTION OF LEFT AND RIGHT TURNING STATES BASED ON TWO SENSOR FUSION STRATEGIES

Leg Side Sensor fusion strategy Sensitivity Specificity Accuracy

Left
Upper Trunk and foot sensors 99.67± 0.88 99.14± 0.64 99.40± 0.55

Upper Trunk and shank sensors 99.41± 1.02 99.08± 0.98 99.47± 0.45

Right
Upper Trunk and foot sensors 97.96± 1.85 98.49± 2.06 98.25± 1.71

Upper Trunk and shank sensors 97.66± 2.33 99.10± 1.14 98.43± 1.35

of the algorithm is to distinguish the turning state if the
course angle changes of sensors placed on the upper trunk
and foot (or shank) exceed the set-up threshold values.
The gait phase detection algorithm can identify the HO
and HS events during both straight walking and turning
tasks with an accuracy of 100%. The course angle change
between the HO and successive HS events was calculated
and used in the rule-based machine learning approach of
which performance was evaluated in the experiment. Results
showed that the approach obtained a good performance on
the turning detection with accuracy over 98%. The choice of
sensor location (foot or shank) does not have a significant
effect on the classification accuracy. However, the turning
direction may affect the accuracy of turning identification
due to the kinematic difference of the inner and outer leg
during turning.

The results suggested that it is feasible to achieve a
plausible classification performance on straight walking and
turning with the use of three sensors, e.g., one placed on the
upper trunk and two on both feet respectively. As inertial
sensors are lightweight and small in size, they will not hinder
the gait pattern of PD patients. A limitation of this study is
that the algorithm has not been validated on patients. The
PIGD patients are now enrolled in our ongoing study for
clinical validation. Moreover, the turning detection algorithm
will be further implemented in a motion analysis model for
complex gait tasks in which gait variables can be estimated
for patients with motion dysfunctions in near future.
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