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Abstract— By being predicated on supervised machine learn-
ing, pattern recognition approaches to myoelectric prosthesis
control require electromyography (EMG) training data col-
lected concurrently with every detectable motion. Within this
framework, calibration protocols for simultaneous control of
multifunctional prosthetic hands rapidly become prohibitively
long—the number of unique motions grows geometrically with
the number of controllable degrees of freedom (DoFs). This
paper proposes a technique intended to circumvent this combi-
natorial explosion. Using EMG windows from 1-DoF motions
as input and EMG windows from 2-DoF motions as targets,
we train generative deep learning models to synthesize EMG
windows appertaining to multi-DoF motions. Once trained,
such models can be used to complete datasets consisting of
only 1-DoF motions, enabling simple calibration protocols with
durations that scale linearly with the number of DoFs. We
evaluated synthetic EMG produced in this way via a classifica-
tion task using a database of forearm surface EMG collected
during 1-DoF and 2-DoF motions. Multi-output classifiers were
trained on either (I) real data from 1-DoF and 2-DoF motions,
(II) real data from only 1-DoF motions, or (III) real data
from 1-DoF motions appended with synthetic EMG from 2-
DoF motions. When tested on data containing all possible
motions, classifiers trained on synthetic-appended data (III)
significantly outperformed classifiers trained on 1-DoF real data
(II), although significantly underperformed classifiers trained
on both 1- and 2-DoF real data (I) (p < 0.05). These findings
suggest that it is feasible to model EMG concurrent with
multiarticulate motions as nonlinear combinations of EMG
from constituent 1-DoF motions, and that such modelling can
be harnessed to synthesize realistic training data.

I. INTRODUCTION

In order to restore upper limb functionality, a myoelectric
prosthetic hand should ideally require little effort to control
and at the same time allow the user to perform a wide range
of grasps and motions. The first desideratum—naturalness
of control—is in theory straightforwardly achievable by
pursuing myoelectric control based on pattern recognition
[1]. Within this framework, the prosthesis control problem
is formulated as one of statistical prediction: by utilizing
data comprised of electromyography (EMG) signals and
concurrent motion labels, machine learning algorithms can
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be trained to classify EMG time segments as belonging to one
out of multiple predefined motion classes. Decisions from
algorithms trained in this way can be interpreted as motion
commands to be sent to a motorized prosthesis.

By construction, pattern recognition myoelectric control
requires EMG training data from every motion that is to be
performable by the prosthesis user. This presents an obvious
obstacle to achieving diversity of possible motions. The
problem is exacerbated by the fact that simultaneous con-
trol—here meaning the ability to independently steer every
kinematic degree of freedom (DoF) at the same time—is
arguably one of the ultimate goals of the prosthesis control
field [2]. To realize the scope of the problem of achieving
simultaneous control with pattern recognition methods, one
can consider the case of a prosthetic hand with D DoFs, each
of which can assume S states. The number of unique motions
M such a system can perform is M = SD, i.e. the number
of unique motions grows geometrically with the number of
controllable DoFs. Thus, as the mechanical sophistication
of prostheses increases, the number of motions that need
to be recorded from amputees is subject to a combinatorial
explosion. Corollarily, exhaustively recording EMG signals
from every possible motion entails long and complicated
acquisition protocols even for relatively small values of D
and S.

In light of the difficulties in procuring sufficient data for
training simultaneous control methods within the pattern
recognition paradigm, we propose a method intended to
circumvent the need for exhaustive, user-specific datasets. In
brief, we introduce a novel artificial neural network (ANN)
architecture and use it to explicitly model user-independent
relationships between EMG from motions incorporating mul-
tiple DoFs and EMG from constituent 1-DoF motions. Once
trained on pairings of EMG windows from a multi-subject
dataset comprised of 1-DoF motions and all of their possible
combination motions, such models can be used to synthesize
user-specific EMG windows associated with multiarticulate
motions from real examples of 1-DoF EMG windows. Using
this framework, new prosthesis users would only need to
perform all relevant 1-DoF motions (i.e. a total of D · S
unique motions) for the purpose of calibration, after which
standard pattern recognition control interfaces can be trained
on a dataset including synthetic multi-DoF EMG. In this
study, the quality of synthetic EMG produced with this
method was evaluated via a classification task: performance
metrics obtained from multi-output classifiers trained on
real data was compared to metrics obtained from classifiers
trained on real data augmented with synthetic EMG.
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Previous work has been successful in synthesizing EMG
signals for the purpose of training data augmentation, either
via explicit simulations [3] or via deep generative learning
[4]. Although studies concerning EMG motion decoding
has often conceptualized motions as composed of 1-DoF
’basis’ motions for the purpose of multi-output classification
(e.g. [2], [5]), we are not aware of any existing attempts to
leverage this combinatorial view in order to synthesize EMG.

II. METHODS

A. Data

The database of EMG recordings with synchronized mo-
tion annotations used here was originally collected for the
purpose of a previous study [6]. In brief, myoelectric sig-
nals were recorded from 20 healthy subjects using a Myo
armband (Thalmic labs, Canada) consisting of 8 circularly
arranged bipolar surface electrodes. The armband was placed
enclosing the dominant forearm of the subject at a level
approximately 1/3 of the distance from the elbow to the
wrist. EMG signals were sampled at a rate of 200 Hz.
The collection protocol entailed the use of two DoFs: (I)
flexion/extension of the wrist and (II) flexion/extension of all
digits simultaneously. Motions were encoded using a ternary
scheme, wherein each DoF could assume 1 out of 3 values
at each time point: -1 (flex), 0 (neutral/stall), or 1 (extend).
This scheme allows for SD = 32 = 9 possible motions
(listed in table I), all of which were recorded. Each motion
was repeated R = 3 times, with repetitions lasting for 5
seconds and separated by 3 s of rest.

An inter-subject leave-one-out cross-validation design was
used to partition the data for the purpose of training and
evaluating the generative framework. At each iteration, data
from 19 subjects were used to train a synthesizer model via
the procedures outlined in the sections following. Data from
the remaining, held-out subject were lastly used as the basis
for intra-subject classifier training and testing for the purpose
of evaluating the impact adding synthetic training data has
on pattern recognition performance.

TABLE I: The 9 recorded motions comprising the database.

Motion Description Ternary Encoding
Rest [0, 0]
Flexion of the wrist [-1, 0]
Extension of the wrist [1, 0]
Flexion of the digits [0, -1]
Extension of the digits [0, 1]
Flexion of the wrist & Flexion of the digits [-1, -1]
Flexion of the wrist & Extension of the digits [-1, 1]
Extension of the wrist & Flexion of the digits [1, -1]
Extension of the wrist & Extension of the digits [1, 1]

B. Preparation of Synthesizer Training Data

At each cross-validation iteration, raw EMG time series
Xc[n] from the 19 subjects constituting the training data were
clipped at the 1:st and 99:th percentiles and normalized to the
range [−1, 1] separately for each channel c = 1, ..., 8. Con-
ditioned signals Sc[n] obtained in this way were, separately

for each subject, segmented into a set of EMG time windows
{Er

i,j}, where Er
i,j ∈ R600×8 represents the middle 3 s (600

samples) of the r:th repetition of the motion with ternary
encoding i∈{−1, 0, 1}, j∈{−1, 0, 1}. With 8 unique nonrest
motions (from table I) repeated 3 times, 3 ·8 = 24 such time
windows were obtained per subject. To construct training
data for the ANN model, EMG window instances originating
from 2-DoF motions—designated as the target value—were
paired with two EMG window instances originating from
its two constituent, 1-DoF movements—designated as input
values. By including every possible pairing of repetitions,
this approach resulted in a training set consisting of a total
of M · R3 = 4 · 33 = 108 input-output pairs per subject,
where M = SD − D − 1 = 4 is the number of unique 2-
DoF motions and R = 3 is the total number of available
repetitions for each motion.

C. Synthesizer Model

All deep learning models used in this study were im-
plemented and instantiated using the TensorFlow 1.12 li-
brary executed with Python 3.6. Inspired by the variational
autoencoding [7] approach to distribution modeling, the
synthesizer model architecture introduced and applied here
(illustrated graphically in fig. 1) performs a mapping from
two EMG windows recorded during two different single-
DoF motions—DoF 1 and DoF 2, respectively—to an EMG
window recorded concurrently with the motion consisting of
DoF 1 and DoF 2 active simultaneously. Specifically, the
architecture consists of 3 modules: two encoder networks, a
mixer network, and a decoder network.

Fig. 1: Schematic overview of the synthesizer model.
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• Encoder. The encoder networks transform the input 1-
DoF EMG windows Ei,0 ∈ R600×8 and E0,j ∈ R600×8

into code vectors C1 ∈ R1024 and C2 ∈ R1024,
respectively. They consist of 6 2D convolution layers
with kernel sizes [9×1], [1×3], [15×1], [1×3], [15×1],
and [1× 3]; output depths 64, 64, 256, 256, 1024, and
1024; and strides [6 × 1], [1 × 2], [10 × 1], [1 × 2],
[10 × 1], and [1 × 2]. Each layer is followed by leaky
ReLU activation, layer normalization, and 50% dropout.
The encoder networks share weights during training.

• Mixer. The mixer network transforms the encoder out-
put codes C1 and C2 into a mean vector µ ∈ R1024 and
standard deviation vector σ ∈ R1024. This is achieved
using a single fully connected layer of output size 2048
with linear activation function, whose output is split in
two. The obtained vectors are used to define a 1024-
dimensional distribution N(µ, diag(σ)), from which a
sample code C1,2 is drawn and presented as output.

• Decoder. The decoder network transforms an input
mixture code C1,2 ∈ R1024 into an 2-DoF synthetic
EMG time window Êi,j ∈ R600×8. Mirroring the
architectures of the encoders, the decoder consists of
6 2D transposed convolution layers with kernel sizes
[1× 3], [15× 1], [1× 3], [15× 1], [1× 3], and [9× 1];
output depths 1024, 256, 256, 64, 64, and 1; and strides
[1× 2], [10× 1], [1× 2], [10× 1], [1× 2], and [6× 1].
The first 5 transposed convolution layer are followed
by leaky ReLU activation, layer normalization, and 50%
dropout; the final layer is followed by a linear activation.

Models were trained end-to-end to minimize the loss L:

L = Lr + Ls + Ld (1)

The reconstruction loss Lr quantifies the discrepancy
between the synthetic 2-DoF EMG window produced by
the network and the target 2-DoF EMG window provided
during training. It is obtained by computing the squared
Euclidean distance between the absolute frequency spectrum
of the target Ei,j and the absolute frequency spectrum of the
decoder output Êi,j :

Lr = ‖FFT (Ei,j)| − |FFT (Êi,j)‖22 (2)

The spread loss Ls incentivizes the encoder network
to learn different code representations for EMG windows
originating from different 1-DoF motions:

Ls = max(0, 10− ‖C1 −C2‖22) (3)

The divergence loss Ld regularizes the ANN model by
penalizing mixer output distributions N(µ, diag(σ)) with
large Kullback–Leibler divergence compared to the normal
distribution with zero mean and unit variance:

Ld = KL(N(µ,σ), N(0,1)) (4)

Loss minimization was performed iteratively by use of the
Adam algorithm [8] with η = 10−4, β1 = 0.9, β2 = 0.999,
training in mini-batches of size 1024 for a total of 5000
epochs. At the start of the training, all network parameters
were given initial values via Glorot initialization.

D. Synthetic Data Evaluation

Signals from the held-out subject were split into classifier
training and testing data on the basis of repetition: data from
the first and second repetition of each motion for training and
data from the last repetition for testing. This designation was
used to produce 4 pattern recognition training datasets:

• I: Complete. Real EMG from all motions.
• II: Pruned. Real EMG from all 1-DoF motions.
• III: Deep Augmentation. Real EMG from 1-DoF

motions appended with synthetic EMG from 2-DoF mo-
tions produced by the trained synthesizer model. This
training set was created by feeding every combination
of 1-DoF motion repetitions as inputs to the network;
as the first two repetitions of each motion had been
selected for pattern recognition training, this resulted in
22 = 4 synthetic EMG repetitions per unique 2-DoF
motion.

• IV: Additive Augmentation. Real EMG from all 1-
DoF motions appended with synthetic EMG repetitions
for all 2-DoF motions created by simply summing every
possible pair of real EMG signals from 1-DoF motion
repetitions. This reference training set was included as
a comparison to ensure that any classifier performance
gain brought about by the deep synthesizer model
reflects properties of the synthesized signals and not
simply an inflated training set.

For each of the 4 datasets, signals were segmented into fea-
ture vectors with a sliding window technique using 250 ms
(50 samples) time windows with step size 5 ms (1 sample).
A conventional time-domain feature set [9] (mean-absolute
value (MAV), zero-crossings (ZC), slope-sign change (SSC),
waveform length (WL)) was extracted from each window,
producing a 32-dimensional feature vector at each window
location. A target 2-dimensional ternary label vector asso-
ciated with each feature vector was created by a DoF-wise
majority vote over the samples of the time window. All 32
features were normalized to have zero mean and unit variance
across each pattern recognition training set. A single pattern
recognition test set was created in an identical manner using
the last repetition of all 8 nonrest motions.

For each of the 4 pattern recognition training sets, one
3-class Linear Discriminant Analysis (LDA) classifier was
trained per DoF; the D = 2 classifiers trained on each
training set can together be viewed as a single multi-output,
multi-class classifier whose performance is indicative of the
quality of the training set. A choice of two multi-output clas-
sification metrics—Exact Match Rate (EMR) and Hamming
Loss(HL)—were computed to quantify the performance of
each of the 4 multi-output classifiers when operating on the
test set. For both metrics, the difference in mean (across
the 20 cross-validation iterations) was computed between the
pruned (II) and deep augmentation (III) datasets, between
the full (I) and deep augmentation (III) dataset, and between
the deep augmentation (III) and additive augmentation (IV)
datasets. Wilcoxon signed-rank tests with α = 0.05 were
used to assess the significance of observed differences.
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III. RESULTS

An example of a synthetic EMG window produced by a
deep synthesizer model and an example of a corresponding
real EMG window (i.e. from the same subject and motion)
are shown together in fig. 2. Performance metrics achieved
by LDA classifiers trained on complete (dataset I), pruned
(dataset II), and partially synthetic (datasets III and IV) data
are summarized in fig. 3. For the EMR metric, the mean
increase between dataset II (67.86%) and III (75.42%) was
7.59% (p = 0.00039), the mean increase between dataset IV
(70.60%) and dataset III was 4.82% (p = 0.0064), and the
mean increase between dataset III and dataset I (87.96%)
was 12.54% (p = 0.000089). Similarly for the HL metric,
the mean decrease between dataset II (17.95%) and dataset
III (13.41%) was 4.54% (p = 0.00078), the mean decrease
between dataset IV (15.72%) and dataset III was 2.31% (p =
0.014), and the mean decrease between dataset III and dataset
I (6.24%) was 7.17% (p = 0.000088).

(a) Real EMG window. (b) Synthetic EMG window.

Fig. 2: Example of real and synthetic EMG windows from
the same 2-DoF motion and subject.

(a) Exact Match Rate.

(b) Hamming Loss.

Fig. 3: Multi-output performance metrics of LDA classifiers
trained on datasets I-IV.

IV. CONCLUSION

This paper has proposed a deep learning-based approach
for completing EMG pattern recognition training datasets
containing only 1-DoF motions with synthetic EMG asso-
ciated with multi-DoF motions. To assess the viability of the
approach, the impact on classifier performance of partially
synthesized data was investigated. The inclusion of EMG
synthesized via the novel approach resulted in significantly
higher performance (as measured by two metrics) compared
to when using unaugmented data and augmented data created
with a naive reference method. Nevertheless, the quality of
the synthesized 2-DoF data was found to be strictly inferior
to real EMG signals from 2-DoF motions for the purpose
of training pattern recognition algorithms. Even so, these
findings show that it is possible to model a user-independent
relationship between EMG from multi-DoF motions and
EMG from constituent 1-DoF motions, and that such models
can be used to generate practically applicable training data.

Although this work only involved models operating on
EMG from 2-DoF motions, there is no fundamental obstacle
to extending the approach presented here to an arbitrary
number of controllable DoFs. However, the need to record
all combinations for the purpose of initially training a syn-
thesizer model puts a practical upper limit on the number
of DoFs manageable by the approach. In addition to ex-
tending the method to dataset with additional DoFs, future
work could evaluate the use of alternative machine learning
methods aimed at image or signal combining (e.g. [10]).

REFERENCES

[1] E. Scheme and K. Englehart, ”Electromyogram pattern recognition
for control of powered upper-limb prostheses: state of the art and
challenges for clinical use,” J Rehabil Res Dev, 2011, vol 48, pp.
443-59.

[2] A. Krasoulis and K. Nazarpour, ”Myoelectric digit action decoding
with multi-output, multi-class classification: an offline analysis,” Sci
Rep, vol. 10, no. 1, 2020.

[3] A. Furui, H. Hayashi, G. Nakamura, T. Chin, and T. Tsuji, ”An
artificial EMG generation model based on signal-dependent noise and
related application to motion classification,” PLoS one, vol. 12, no. 6,
2017.

[4] E. Campbell, J. A. D. Cameron, and E. Scheme, ”Feasibility of data-
driven EMG signal generation using a deep generative model,” in 2020
42nd Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 2020, pp. 3755-3758.

[5] A. E. Olsson, P. Sager, E. Andersson, A. Björkman, N. Malesevic,
and C. Antfolk, ”Extraction of multi-labelled movement information
from the raw HD-EMG image with time-domain depth,” Sci Rep, vol.
9, no. 1, 2019.

[6] A. E. Olsson, N. Malesevic, A. Björkman, and C. Antfolk, ”Learning
regularized representations of categorically labelled surface EMG en-
ables simultaneous and proportional myoelectric control,” J Neuroeng
Rehabil, vol. 18, no. 35, 2021.

[7] D. P. Kingma and M. Welling, ”Auto-Encoding Variational Bayes,”
in 2nd International Conference on Learning Representations
(ICLR2014), 2014.

[8] D. P. Kingma and J. Ba, ”Adam: A method for stochastic optimiza-
tion”, Preprint available: http://arxiv.org/abs/1412.6980, 2014.

[9] B. Hudgins, P. Parker, and R. N. Scott, ”A new strategy for multi-
functional myoelectric control,” IEEE Trans Biomed Eng, vol. 40, no.
1, pp. 82-94, 1993.

[10] L. A. Gatys, A. S. Ecker, and M. Bethge, ”A neural algorithm
of artistic style,” Preprint available: https://arxiv.org/abs/1508.06576,
2016.

6383


