
  

 
 

Abstract— This study presents the implementation of a 

within-subject classification method, based on the use of Linear 

Discriminant Analysis (LDA) and Support Vector Machines 

(SVM), for the classification of hemodynamic responses. Using a 

synthetic dataset that closely resembles real experimental infant 

functional near-infrared spectroscopy (fNIRS) data, the impact 

of different levels of noise and different HRF amplitudes on the 

classification performances of the two classifiers are quantitively 

investigated.  

 

I. INTRODUCTION 

Functional Near-Infrared Spectroscopy (fNIRS) data is a 
neuroimaging technique based on the measurement of the 
optical absorption properties of cerebral blood [1]. Allowing 
to measure the relative changes of oxygenation in the human 
head in response to a specific task or at rest, its use has become 
quite widespread in developmental neuroscience: since it is 
fully non-invasive, easy to use and silent, it is very well suited 
even in the youngest participants, e.g. in newborns.  

Nevertheless, the specificities of infant fNIRS data can 
make the subject-level statistical analysis complicated; in 
particular, the infant hemodynamic response (HRF) often 
displays large variability in shape [2] and is characterized by  
smaller amplitudes [3]. This makes the use, for instance, of 
general linear models (GLMs) more difficult than with adults 
data. 

In a previous work [4], we introduced a data-driven 
analysis scheme that, by comparing temporal segments of data 
within the same subject, would characterize a given fNIRS 
channel as active or not active by means of a classification 
method based on Linear Discriminant Analysis (LDA), 
achieving good classification accuracy on adult data during a 
motor task (78.7%). 

In this work, we aim at investigating the applicability of 
that method to the analysis of infant data by employing a 
synthetic dataset that closely resembles it; in fact, for this 
method to find efficient application in infant data, a clear 
description of how accuracies change with increasing levels of 
noise and low or very low HRF amplitudes is necessary. 
Therefore, the use of a parametrized dataset is extremely 
valuable. In addition, we also aim at clarifying whether LDA 
and Support Vector Machines (SVM) perform differently 
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depending on the amount of noise in the data or on the HRF 
amplitude. 

II. METHODS 

A. Data Generation 

Synthetic data was generated according to the montage and 
stimulus design employed in Gervain et al. (2012, [5]). In that 
study, fNIRS data was acquired in newborns using a montage 
with 24 channels, arranged bilaterally on the fronto-temporal 
areas. Data was generated using tools available in the Brain 
AnalyzIR Toolbox for Matlab [6]. 

Ten datasets (“participants”) were simulated each with 
18s-long 14 stimuli. Synthetic HRFs’ amplitudes ranged 
between 0.05 and 0.25 mM x mm (between -0.025 and -0.125 
mM x mm for HbR), across channels and subjects, to mimic 
the inter- and intra-subject variability naturally present in real 
experimental settings. Importantly, HRFs were only added to 
12 channels: this allowed to have a clear ground truth of true 
active and true not active channels. Moreover, no HRFs were 
included in the initial five minutes of each timetrace: this 
segment of resting state will be used to create “rest” 
observations to be employed in the classification.  

To simulate the contribution of heart rate, respiration and 
Mayer waves to the NIRS signal, the signal amplitude was 
increased by a factor ranging between 0.01 and 0.03 mM x 
mm, at frequencies typical of the newborn NIRS data, namely 
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Figure 1: The scheme describes the pipeline employed to generate 

the synthetic infant fNIRS dataset. For each dataset, three different 

versions were created with three different levels of noise, based on 

the amplitude of the motion artifacts [7]. 
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in the ranges around 1.5 ± 0.2 Hz, 0.25 ± 0.05 Hz and 0.1 ± 
0.02 Hz, respectively. 

Finally, three different versions of these functional datasets 
were created, characterized by different levels of noise (Figure 
1), measured in terms of coefficient of variation (CV (%), i.e. 
standard deviation of the timetrace divided by its average). 

The scheme in Figure 1 described the simulation steps and 
shows an example of simulated data. This approach is similar 
to the one used in our previous work [4], but the characteristics 
of the data is tailored to better represent typical data acquired 
on infants [7]. More details on the data generation procedure 
are provided in [8], along with the code to reproduce it.  

B. Pre-processing 

Data were pre-processed using custom scripts written in 

Matlab. In particular, raw data were band-pass filtered in the 

range 0.01-0.7 Hz; the filter was designed as an IIR filter and 

applied forward-backward with the filtfilt function, to achieve 

zero-phase filtering. Then, filtered raw data were converted 

into optical densities and concentration changes using the 

modified Beer-Lambert equation with the following 

absorption coefficients (μa, mm-1-mM-1): μa(HbO, 695 nm) = 

0.0955, μa(HbO, 830 nm) = 0.232, μa(HbR, 695 nm) = 0.451 

and μa(HbR, 830 nm) = 0.179.  

C. Extraction of features 

For the ‘task’ observations, features were extracted, for 
each channel, from each of the 14 single-trial epoched signals, 
using the approach employed in [4] and [9] . In particular, a 
4s wide sliding window was moved through the signal within 
the stimulation period (18s) in 2s steps; for each window, the 
average signal value and average slope were computed and 
retained as features. For each channel, the procedure was 
repeated on both hemoglobin components, and respective 
features were concatenated; the resulting multivariate feature 
vector thus included 28 features (2 features x 7 time windows 
x 2 hemoglobin components). 

To create the ‘rest’ observations, for each channel, 14 
markers were randomly positioned throughout the initial five 
minutes segment of resting state, and features were extracted 
in the same fashion explained above. 

The resulting channel-wise feature matrix included 
therefore 28 observations with 28 features, and was 
standardized. 

D. Classification 

Two separate classification procedures were carried out,  
with regularized Linear Discriminant Analysis (LDA) and 
Support Vector Machines (SVM); LDA was implemented via 
tools available in the Berlin Brain-Computer Interfacing 
(BBCI) toolbox [10], [11]; in this implementation, the optimal 
shrinkage parameter is obtained analytically [12], [13].  
SVMs were employed with linear kernel using functions of 
the Statistics and Machine Learning Toolbox of Matlab [14]. 

In both cases, ten repetitions of four-folds cross validation 
were performed: the 28 observations were separated into four 
folds, with three folds used for training and one for testing. 
Classification accuracies were averaged across folds and 
repetitions.  

Additionally, in order to ensure a robust sampling of the 
rest observations within the five minutes resting state, the 
whole procedure of sampling observations, extracting features 
and performing the classification was repeated 100 times. 
Accuracies were further averaged across these repetitions.  

Finally, in order to characterize a channel as active or not 
active, channel-wise classification accuracies were compared 
to their correspondent chance-level classification accuracies: 
to obtain them, the same classification procedures were 
repeated on resting state only timetraces; fictitious triggers 
were placed at random times along the first five minutes, and 
classification was performed. The process was repeated 100 
times. 

E. Statistical Analysis 

Identification of active channels: To classify a channel as 
active or not active, the observed classification accuracy was 
compared to the distribution of chance-level accuracies: a 
channel was classified as active if the ratio between the 

Figure 2: (Top) Example of feature extraction. For each channel, 

from each single-trial epoched signal (soft lines; thicker lines show 

class averages), features are extracted within seven sliding windows. 

In particular, for each window average amplitude and slope from 

both HbO and HbR are calculated. (Bottom)  Discriminability of task  

from rest observations based on the chosen features; for visualization 

purposes, only features extracted from the 4th window are shown 

(window is highlighted in grey in the top panel). In each i-j scatter 

plot, i represents the feature shown on the y-axis and j represents that  

shown on the x-axis.  
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number of chance-level accuracies equal to or greater than the 
observed one, divided by the total number (n=100) was 0.05 
or less (p<0.05). 

Impact of data characteristics on performances: To 

statistically compare the performances of the algorithms, a 

mixed-effects linear model was fitted to the classification 

accuracy as dependent variable. A maximal random-effects 

structure was planned, with a random intercept for Participant 

and random uncorrelated slopes for the within-subject factors 

Noise, Algorithm and Channel. We then added fixed effects 

for Noise (3 levels) and Algorithm (2 levels) and the 

continuous variable HRF amplitude, as well as their 

interaction. As the full model did not converge, we removed 

first the random slope for Channel, and then for Algorithm. 

Models were implemented in JASP [15] and subsequent 

pairwise comparisons were adjusted for multiple comparisons 

with the Tukey procedure.  

III. RESULTS 

The goal of the analysis was to compare the performances 
of LDA and SVM in classifying a given fNIRS channel as 
active or not active, in the context of a functional experiment. 

On average, LDA and SVM yielded very similar overall 
classification accuracies (LDA: 75.9 %, SVM: 75.5%), with a 
standard deviation across channels, subjects and noise levels 
of 16.2% for LDA and 15.6% for SVM. The true discovery 
rate, namely the rate of truly active channels classified as such, 
ranged between 57.5% and 80.8% for LDA and 63.3% and 
78.3% for SVM; clearly, it was higher for the less noisy 
datasets (80.8% LDA, 78.3% SVM) than for the more noisy 
ones (57.5% LDA, 63.3% SVM). 

To investigate quantitively the impact of data 
characteristics on accuracies and find whether one algorithm 
is more suited in given conditions, a mixed-effects model was 
employed. It revealed significant main effects of Noise (F(2, 
681)=15.26, p < 0.001) and HRF amplitude (F(1, 689)= 
2718.12, p < 0.001) and significant interaction effects of 
Algorithm x Noise (F(2, 681)=3.09, p < 0.05) and Noise x 
HRF amplitude (F(2,581)= 15.09, p < 0.001). 

Pairwise comparisons on the Algorithm x Noise interaction 
effect showed that SVM yielded a significantly higher 
classification accuracy than LDA only at the highest level of 
noise (mean difference 0.02, SE = 0.008, p = 0.03). No 
difference between the performance of the algorithms was 
found at lower levels of noise (CV<10%). 

As for the Noise x HRF amplitude interaction, the slope 
between HRF amplitude and accuracy of the linear prediction 
for the high level of noise was significantly lower than both 
the other levels (slopeHIGH= 1.86, SE= 0.07; p < 0.001; 
slopeMEDIUM= 2.33, SE= 0.07; slopeLOW= 2.36, SE= 0.07).  

As for the main effect of Noise, all pairwise contrasts 
resulted statistically significant (Low-Medium 0.04, t= 5.53, p 
<0.01; Medium – High 0.08, t= 6.03, p< 0.001; Low-High 
0.12, t = 9.81, p <0.001). 

Finally, the three-way interaction Algorithm x Noise x HRF 
did not turn out to be significant; this result suggests that data 
quality and specifically high levels of noise contribute alone to 

a lower classification accuracy, regardless of the algorithm 
employed for discrimination. 

IV. DISCUSSION 

The statistical analysis of fNIRS data is often complicated 
by several aspects, like serial autocorrelations, large variability 
both inter- and intra-subject, systemic oscillations  that overlap 
with the frequencies of the hemodynamic responses and 
motion artifacts [16].  

In this sense, the favorable properties of the classifier we 
introduced for the analysis of adult fNIRS data [4] would be 
even more advantageous for the analysis of that acquired on 
infants: compared to adult data, fNIRS data acquired on infants 
and toddlers is often of poorer quality, with timetraces 
characterized by large and frequent motion artifacts. 
Furthermore, the infant HRF more often displays atypical 
features (e.g.“inverted responses” [2]) and smaller amplitudes, 
compared to the adults’. For these reasons, true activations 
may often remain undetected.  

Figure 4: (A) Classifications accuracies achieved at different 

levels of noise, as a function of the HRF amplitude. (B) Pairwise 

comparisons on the Algorithm x Noise interaction effect showed 

that SVM performs better than LDA at higher levels of noise (70 

v 68%, p = 0.03) 

Figure 3: Distribution of classification accuracies pooled from all 

subjects, channels and noise levels (LDA, M: 75.9%, S: 16.2%; 

SVM, M: 75.5%, S: 15.6%) 
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In this work, we employed a synthetic dataset that closely 
resembles the characteristics of real infant fNIRS data: noisy, 
artifacted and with hemodynamic activity of very small 
amplitude (0-0.2 mm x mM). This allowed not only to have a 
clear ground truth but also to quantitively assess the impact of 
the data characteristics (HRFs, artifacts) on classification 
performances.  

We classified channels as active or not active with a self-
referencing scheme: within the same subject, classification 
was performed by comparing time intervals corresponding to 
resting state and to execution of the task. For the classification, 
we selected rLDA and SVM; several other works [17], [18] 
reported that they tend to have similarly good performances, 
but the question of how these are affected by data 
characteristics had not yet been explored to our knowledge. 

Overall, rLDA and SVM performed very similarly. It is 
noteworthy that no difference was found under different HRFs 
amplitudes; moreover, even at the typical small amplitude of 
0.1 mm x MM and at the worst level of noise, both yielded 
performances larger than 60%. This result is very relevant for 
the applicability of this method to newborn and infant fNIRS. 

SVM was found to be slightly superior than rLDA at large 
noise levels, with a small but significant difference in accuracy 
(SVM: 70%, rLDA: 68%). But noise and HRFs amplitudes 
explained the largest share of variability in classification 
accuracy, regardless of the algorithm employed.  

This result highlights the importance of selecting 
appropriate pre-processing strategies: here, since we 
specifically aimed at quantifying the impact of noise on 
performances, we did not either reject bad quality trials neither 
correct them with semi-automated methods. The application of 
this method to real experimental data should involve careful 
consideration of this issue; the selection of the most 
appropriate strategy depends on a number of factors, in 
particular the number of available experimental trials. For in-
depth discussion on this topic we refer the reader to [7].  

Our findings indicate that a linear classifier, such as rLDA 
or SVM, is suitable for classifying infant NIRS data and that a 
data-driven analysis based on one of these algorithms can 
produce results with good accuracy. Future work should 
involve the application of this method to real experimental 
data and compare it with other analysis frameworks. 

V. CONCLUSIONS 

• Synthetic infant fNIRS channels, with un-processed 

artifacts, can be classified as active or not active with 

classification accuracy ~ 75%. 

• LDA and SVM perform similarly. 

• SVM performs slightly better than LDA on the very noisy 

data. 

• Noise and HRF amplitude have the biggest impact on 

classification accuracies: application to real experimental 

data should involve careful removal of motion artifacts, 

by means of trial rejection or correction. 

ACKNOWLEDGMENT 

This work was supported by the ERC Consolidator Grant 

“BabyRhythm 773202” awarded to Judit Gervain. The author 

wishes to thank Dr. Judit Gervain and Dr. Benjamin Blankertz 

for providing insightful and valuable feedback. 

REFERENCES 

[1] M. Ferrari and V. Quaresima, “A brief review on the history of 

human functional near-infrared spectroscopy (fNIRS) development 
and fields of application,” Neuroimage, vol. 63, no. 2, pp. 921–935, 

2012. 

[2] C. Issard and J. Gervain, “Variability of the hemodynamic response 
in infants: Influence of experimental design and stimulus 

complexity,” Dev. Cogn. Neurosci., vol. 33, no. January, pp. 182–

193, 2018. 
[3] R. N. Aslin, M. Shukla, and L. L. Emberson, “Hemodynamic 

Correlates of Cognition in Human Infants,” Annu. Rev. Psychol., 

vol. 66, no. 1, pp. 349–379, 2014. 

[4] J. Gemignani, E. Middell, R. L. Barbour, H. L. Graber, and B. 

Blankertz, “Improving the analysis of near-infrared spectroscopy 

data with multivariate classification of hemodynamic patterns : a 
theoretical formulation and validation,” J. Neural Eng., vol. 15, no. 

4, p. 045001 (15pp), 2018. 

[5] J. Gervain, I. Berent, and J. F. Werker, “Binding at birth: The 
newborn brain detects identity relations and sequential position in 

speech,” J. Cogn. Neurosci., vol. 24, no. 3, pp. 564–574, 2012. 
[6] H. Santosa, X. Zhai, F. Fishburn, and T. Huppert, “The NIRS Brain 

AnalyzIR Toolbox,” Algorithms, vol. 11, no. 5, p. 73, May 2018. 

[7] J. Gemignani and J. Gervain, “Comparing different pre-processing 
routines for infant fNIRS data,” Dev. Cogn. Neurosci., vol. 48, no. 

July 2020, p. 100943, 2021. 

[8] J. Gemignani and J. Gervain, “A practical guide for synthetic 
fNIRS data generation,” under review in 43rd Annual International 

Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), 2021. 
[9] J. Shin, K.-R. Müller, and H.-J. Hwang, “Near-infrared 

spectroscopy (NIRS)-based eyes-closed brain-computer interface 

(BCI) using prefrontal cortex activation due to mental arithmetic,” 
Sci. Rep., vol. 6, no. 1, p. 36203, Dec. 2016. 

[10] “BBCI toolbox.” [Online]. Available: 

https://github.com/bbci/bbci_public. [Accessed: 03-Nov-2016]. 
[11] B. Blankertz et al., “The Berlin Brain-Computer Interface: 

Progress Beyond Communication and Control,” Front. Neurosci., 

vol. 10, p. 530, 2016. 
[12] O. Ledoit, M. Wolf, O. Ledoit, and M. Wolf, “A well-conditioned 

estimator for large-dimensional covariance matrices,” J. Multivar. 

Anal., vol. 88, no. 2, pp. 365–411, 2004. 
[13] J. Schäfer and K. Strimmer, “A Shrinkage Approach to Large-Scale 

Covariance Matrix Estimation and Implications for Functional 

Genomics,” Stat. Appl. Genet. Mol. Biol., vol. 4, no. 1, Jan. 2005. 
[14] . The Mathworks, “MATLAB and Statistics and Machine Learning 

Toolbox Release 2020a.” Natick, Massachusetts, United States, 

2020. 
[15] JASP Team, “JASP (Version 0.14.1)[Computer software].” 2020. 

[16] T. J. Huppert, “Commentary on the statistical properties of noise 

and its implication on general linear models in functional near-
infrared spectroscopy,” Neurophotonics, vol. 3, no. 1, p. 010401, 

2016. 

[17] M. Misaki, Y. Kim, P. A. Bandettini, and N. Kriegeskorte, 
“Comparison of multivariate classifiers and response 

normalizations for pattern-information fMRI,” Neuroimage, vol. 

53, no. 1, pp. 103–118, 2010. 
[18] K. Tai and T. Chau, “Single-trial classification of NIRS signals 

during emotional induction tasks: Towards a corporeal machine 

interface,” J. Neuroeng. Rehabil., vol. 6, no. 1, pp. 1–14, 2009. 
 

827


