
  

  

Abstract— The use of a large and diversified ground-truth 

synthetic fNIRS dataset enables researchers to objectively 

validate and compare data analysis procedures. In this work, 

we describe each step of the synthetic data generation workflow 

and we provide tools to generate the dataset. 

 

I. INTRODUCTION 

Functional Near Infrared Spectroscopy (fNIRS) is a non-
invasive neuroimaging technique based on the measurement 
of the optical absorption of cerebral blood [1]. Thanks to the 
different absorption spectra of oxygenated and deoxygenated 
hemoglobin (HbO and HbR, respectively) in the near-infrared 
region of the electromagnetic spectrum (650−900 nm), 
fNIRS measures the relative changes of oxygenation and 
blood perfusion in the human brain at rest or in response to a 
specific task.  

Its use in research has greatly increased over the last two 
decades [2] and so has the diversity in methodological 
practices. A large heterogeneity in experimental approaches 
and data analysis methods inevitably poses a challenge to the 
comparability and replicability of studies [3], which is why 
the fNIRS community is currently dedicating considerable 
effort to the systematic validation and standardization of 
practices for each aspect of fNIRS research, by comparing 
different hardware performances [4],[5], pre-processing 
methods [6]–[8] and techniques for the statistical analysis 
[9],[10], just to name a few, with the ultimate goal of 
establishing common, standardized and well-reproducible 
practices [11]. 

For the validation and comparison of different data 
analysis practices, synthetically generated and systematically 
parametrized ground-truth datasets are necessary, as they 
allow researchers full control over the metric(s) under 
investigation and provide insight into how data 
characteristics interact with analysis parameters, e.g., a given 
analysis pipeline, the choice of filtering or artifact rejection 
etc. 

This paper offers a step-by-step illustration of the 
procedure followed for generating the synthetic fNIRS 
dataset employed in Gemignani et al. (2018) [12] and 
Gemignani and Gervain (2021) [8], and provides publicly 
available code to reproduce it and synthesize ground-through 
datasets with fully controllable parameters. 
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II. METHODS 

Synthetic data was generated using tools available in the 

Brain AnalyzIR Toolbox for Matlab [13]. 

A. Experimental design and optode arrangement 

As a first step, an experimental design needs to be identified, 

according to which hemodynamic responses will be placed 

along the time series. 

The vast majority of fNIRS paradigms fall into one of the 

following categories: block design, event-related design and 

resting-state paradigms; for both event-related and block- 

paradigms, features of the design include: type of stimuli, 

number of conditions, number of trials per condition, trial 

order, trial duration and the duration of the inter-trial interval 

[11]. 

In this work, synthetic data was generated using the 

experimental design in Gervain et al. (2012) [14]. In that 

study, NIRS was acquired in 22 newborns using a montage 

with 24 channels.  

We thus generated a synthetic dataset with 22 “participants”, 

each with 24 time series corresponding to the 24 channels. 

Like in the original study, the time series comprised two 

conditions, with 14 trials per condition, each lasting 

approximately 18 seconds, and spaced at time intervals of 

varying duration between 25 and 35 seconds.  

B. Baseline noise 

Physiological components of the signal, such as cardiac, 

respiratory and blood pressure changes, are typically much 

slower than the sampling rate of an fNIRS system [10], 

which is the reason why noise in fNIRS data has a colored 

structure and serial correlations: data points are not 

independent of their neighborings. In particular, two 

datapoints sampled 20 s apart still share 20% of the 

information, and, in case of 10 Hz data, it is necessary to 

apply a whitening filter of order 33 to achieve complete 

whitening of the noise (i.e., have completely independent 

neighboring samples), as demonstrated in [10]. 

To account for this, in generating synthetic data, baseline 

noise was produced by first generating white noise, then 

imposing temporal correlation on it by employing an 

autoregressive model of order p = 30.  

This was achieved by modeling each fNIRS time series as 

 

𝑌𝑡 =∑  

𝑝

𝑖=1

𝜑𝑖𝑌𝑡−𝑖 + 𝜀𝑡 

 

where 𝜑1, . . . , 𝜑𝑝 are the randomly generated parameters of 

the model,  𝜀𝑡 is the noise and p is the order of the AR model 

[9].  
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Besides presenting temporal correlation, real fNIRS data is 

also not independent across channels [10]; the spatial 

covariance existing between channels has an impact on the 

assumptions of the group-level statistical analysis. Since this 

relationship is not within the scope of this work, the specific 

dataset presented here was generated with no spatial 

correlation. However, synthetic datasets destined to test 

spatial hypotheses or different statistical analyses for fNIRS 

data should take spatial correlations into account, and it is 

possible to do so within the code provided. 

After generating the temporally correlated baseline signal, 

physiological components were included. The temporal 

variation of these systemic signals can be as large as 10% 

[15]. Therefore, to simulate the contribution of heart rate, 

respiration and Mayer waves, the signal amplitude was 

increased by a factor ranging between 0.01 and 0.03 mM x 

mm (i.e., about 3-10% of the total signal change), at 

frequencies typical of the infant HRF: 1.5 ± 0.2 Hz, 0.25 ± 

0.05 Hz and 0.1 ± 0.02 Hz, respectively. 

C. Hemodynamic activity 

The hemodynamic response (HRF) has been shown to vary 

in latency, amplitude and shape, both across individuals for 

the same region and across brain areas for the same 

individual [16].  

Therefore, a realistic synthetic dataset should include 

responses of various sizes and/or shapes, depending on the 

goal of the study. 

In this work, we included HRFs with amplitudes typical of 

infant fNIRS data [17], namely ranging between 0.1 and 

0.35 mM·mm for HbO and between -0.05 and -0.175 

mM·mm for HbR, and characterized by an onset-to-peak 

time of 6 seconds and an undershoot of 16 s after onset. 

HRFs were modelled with two gamma functions, for the 

peak and the undershoot, respectively. They were added to 

12 channels, i.e. 50% of all channels, which are referred to 

as “active channels”. 

 

 

 
Figure 1: Procedure employed to produce the synthetic dataset. 
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Figure 2: Examples of simulated data; the three time series share the same baseline and physiological noise, but are characterized by 

increasing amplitude and frequency of spikes and shift artifacts, thus resulting in having different levels of noise, measured in terms of 

coefficient of variation (CV, standard deviation of the time series divided by its mean value) (Top) Light intensities (V); green and 

magenta lines indicate time stamps at which motion artifacts were added, as baseline shifts and high frequency spikes, respectively. 

(Bottom) Corresponding concentration changes (mm x mM); black arrows indicate the time stamps at which HRFs were placed. 

 

D. Motion artifacts 

Motion artifacts are the result of a temporary loss of optical 

coupling due to the displacement of the optodes during data 

acquisition.  

Preventing their occurrence during the experiment, or at 

least mitigating their amplitude, is becoming increasingly 

feasible, thanks to steady improvements in fNIRS headgears 

[18];  nevertheless, it remains particularly challenging with 

non-compliant participants, like awake infants, since they 

cannot be instructed to stay motionless. Therefore, motion 

artifacts will appear in the timetraces, in the form of sudden 

spikes or shifts in baseline level.  

It is particularly interesting to add motion artifacts to 

synthetic data, in order to evaluate how the metrics of 

interest change as the frequency and amplitude of artifacts 

increases (e.g. in [6]).  

In our work, motion artifacts were added after the functional 

activity was included to specifically assess how they impair 

its recovery. 

Spikes were modelled as a sudden change of voltage ranging 

between 0.1 and 2 V, while baseline shift artifacts were 

modelled as a random positive or negative change of 

voltage, also ranging between 0.1 and 2 V.  

III. RESULTS 

When generating a synthetic dataset, it is of crucial 

importance to be able to identify how factors under 

investigation (e.g. a given analysis method) interact with 

data characteristics. Taking a parametrized, systematic 

approach is crucial: one dataset should only differ from the 

other along a single dimension, like spike amplitude or HRF 

size. This method therefore allows the user to systematically 

vary amplitudes and timing of the HRF and of the motion 

artifacts,  allowing to precisely disentangle the effect of each 

variable on the resulting metric:  

Figure 2 shows a resting state dataset with three different 

HRFs superimposed on it, characterized by the same HRF 

amplitude (0.07 mm x mM for this specific timetrace) but 

three different levels of noise, measured in terms of 

coefficient of variation of the time series. 

IV. DISCUSSION 

In this work, we describe in detail each step of a workflow 

that generates synthetic fNIRS data and provide the code to 

generate datasets. Adding HRFs and motion artifacts of 

increasing intensity and frequency reveals how these aspects 

impact analysis and how they interact with factors of interest 

(for example, different analysis methods may perform 
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differently under different conditions of artifacts and/or HRF 

amplitudes).  

The specific dataset generated here displays characteristics 

that make it similar to real infant data: this way, 22 

“participants” were simulated, each with 20 different 

settings in terms of HRFs and motion artifacts; in [8], this 

allowed to compare six different pipelines and investigate 

their efficacy under different conditions of noise.  

The procedure described is entirely flexible and it is possible 

to finely tune each parameter: duration of initial resting 

state; frequency ranges of physiological components and 

corresponding amplitude changes; frequency of occurrence 

and amplitude of motion artifacts; amplitude of HRFs and 

distribution across channels.  

The use of fully controlled synthetic datasets will help 

fNIRS researchers compare and objectively validate analysis 

methods, and ultimately design robust and reproducible 

analysis procedures. 

APPENDIX 

The code that reproduces the steps here described is 

available at https://github.com/JessicaGem/nirs-resources, 

file: syntheticfNIRS.m 
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