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Abstract— Magnetic Particle Imaging (MPI) is a new imag-
ing technique that allows high resolution & high frame-rate
imaging of magnetic nanoparticles (MNP). It relies on the non-
linear response of MNPs under a magnetic field. The imaging
process can be modeled linearly, and then image reconstruction
can be case as an inverse problem using a measured system
matrix (SM). However, this calibration measurement is time
consuming so it reduces practicality. In this study, we proposed
a novel method for accelerating the SM calibration based on
joint super-resolution (SR) and denoising of sensitivty maps
(i.e., rows of SM). The proposed method is based on a deep
convolutional neural network (CNN) architecture with residual-
dense blocks. Model training was performed using noisy SM
measurements simulated for varying MNP size and gradient
strengths. Comparisons were performed against conventional
low-resolution SM calibration, noisy high-resolution SM cal-
ibration, and bicubic upsampling of low-resolution SM. We
show that the proposed method improves high-resolution SM
recovery, and in turn leads to improved resolution and quality
in subsequently reconstructed MPI images.

I. INTRODUCTION

Magnetic Particle Imaging (MPI) is a recent modality
that allows imaging the distribution of magnetic nanopar-
ticle (MNP tracers) based on their non-linear magnetization
response [1]. MPI is amenable to real-time imaging as it can
achieve high frame-rates [2]. These properties render it an
ideal modality for applications such as stem cell tracking,
angiography and targeted drug delivery [3]–[5]. To image
MNP tracers, MPI first exerts a non-homogeneous static
magnetic field (i.e., selection field) with a field of view
(FOV). The (SF) contains a field free region (FFR) that
can be a single point (FFP, field-free point) or a single
line (FFL, field-free line). A time-varying drive field is then
applied to reposition the FFR across the FOV. MNPs within
FFR are responsive whereas those outside yield no response
due to saturation. Therefore, the MPI signal consists of the
nonlinear responses of MNPs within FFR at the drive field
frequency and its harmonics, which is generally acquired
using receive coil(s). In this study, we consider system matrix
(SM) based image reconstruction for MPI [1]. SM-based
method case an inverse problem where the the measured
SM linearly projects the image onto the measured signals.
To measure SM, a small MNP sample is imaged while its
location is systematically altered across the FOV. SM-based
reconstructions can offer improved image quality as they
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can account for non-ideal response of MNPs and coils that
generate magnetic fields [6]. However, a priori measurement
of SM results in excessive calibration times. For a typical
FOV of 32×32×32 voxels and 1.3 sec acquisition time
per sample, an astounding 12 hours are required for full
calibration [7]. Note that SM is specific to the imaging
setup, and recalibration is needed with changes to the system
configuration of FFL scan trajectory [8]. Therefore, there is
a dire need for scan-efficient calibration procedures.

To accelerate SM calibration, previous studies have pro-
posed compressed sensing (CS) methods [9], [10]. Rows of
SM correspond to spatial sensitivity maps of the MPI system.
CS methods collect a random subset of SM measurements,
and recover the full SM by enforcing sparsity in discrete
cosine or Chebyshev transform domains. While CS methods
have been reported to enable moderate accelerations (around
10-fold [11]), iterative optimization procedures involve sub-
stantial computational burden, and large FOVs typically
prescribed in clinical scans necessitate further acceleration of
the calibration procedure. Furthermore, a recent study have
proposed using simulated SM, as well as the experimentally
measured SM for joint estimation of both the underlying MPI
image and the SM [12]. This method requires a simulated
SM of the experimental system for reconstruction. Moreover,
the computational burden of the reconstruction procedure
increases significantly, since both SM and the image is
recovered simultaneously, for each image.

Here we introduce a deep-learning approach for simulta-
neous super-resolution (SR) and denoising to capture high-
resolution (HR) SM with short calibration times. While SR
techniques typically aim to increase resolution in image
domain, MNP distribution across the FOV is difficult to
model in MPI. Instead, we resolve sensitivity maps of the
coils that are properties of intact physical systems and easier
to model. Given the success of convolutional neural networks
(CNNs) in SR tasks for computer vision, we adopt a deep-
learning model based on CNNs [13]–[15]. Note, however,
that MPI data are substantially smaller in size and they
are complex-valued. Therefore, we proposed a CNN model
adapted to MPI data. Accordingly, our contributions are as
follows: 1) We proposed a CNN model for joint SR and
denoising of system matrices. 2) We leverage an in-house
MPI simulator to generate training data. 3) We compare the
proposed learning-based method against SR based on linear
interpolation [16]. 4) We show that the proposed method
outperforms conventional methods visualy and quantitatively
in SM recovery, and in subsequent image reconstruction
tasks.
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II. BACKGROUND

A. Forward Model and Calibration Process

In MPI, a drive coil excites MNPs at a specific frequency,
while a receiver coil samples the signal from the excited
FOV. The received signal reflects high-intensity responses
only in small bands centered at the harmonic frequencies.
Hence, the signal can be compressed by filtering the har-
monics in Fourier domain. The resulting signal model can
be expressed as:

Ax+ n = y, (1)

where A ∈ CM×N , x ∈ RN , y ∈ CM and n ∈ CM

represent the complex-valued SM, real-valued image vector,
complex-valued data vector, and noise, respectively. M is the
number of data points, while N is the number of grid points.
We employ an FFL scanning MPI system in this study. Each
row of A(i) ∈ C1×N corresponds to sensitivity map of the
MPI scanner for ith frequency / angle component.

In practice, the system matrix can show nonidealities due
to coil hearing or inter-batch variations in MNP response [8].
A common solution this to perform a calibration scan where
the system matrix is measured using a small MNP sample
[7]. To capture SM, the sample is mechanically traversed
across the entire FOV. The calibration measurements result
in a noisy estimate of the SM:

Ã = A+ Ñ, (2)

Ñ denotes additive noise, and Ã denotes the measured
system matrix. Unfortunately, this calibration process can
last several hours or even days, and it must be repeated
across time due to drifts in imaging conditions. Note that
the calibration MNP sample inherently determines the spatial
resolution, where aiming for higher resolution leads to lower
signal-to-noise ratio, which further prolongs the scan time.
Therefore, a HR SM calibration will last substantially longer
than a low-resolution (LR) SM calibration to maintain similar
SNR. Moreover, signal intensity decreases with increasing
frequency, which results in lower SNR in higher harmonics
[17]. Finally, higher harmonics have more complex shapes
compared to lower ones, which affects the SR performance
[17].

B. Super-Resolution Methods

Single image super-resolution (SISR) is an open problem
in the literature. Recently, deep learning based methods have
gained attraction due to their success in computer vision
tasks. Previous studies have focused mainly on capturing
fine details as the super-resolution factor is increased. Ledig
et al. have proposed using generative adversarial networks
(GAN) with both pixel and perception loss to capture higher
frequency details [13]. Soh et al. have proposed a technique
to improve perceived image quality by using domain prior
properties through constraining the output image to the
natural manifold [14]. Zhang et al. have proposed using
residual-dense network (RDN) with `1-norm loss that allows
direct connections from low-resolution image to output for

better utilization of low-resolution information in the final
output image [15].

C. Image Reconstruction

MPI reconstruction can be cast as an inverse problem with
the following optimization formulation [6]:

argmin
x

α‖x‖1 + (1− α)TV (x)s.t.‖Ax− y‖2 ≤ ε, (3)

where ε is the bound on the `2-norm of noise, TV (·) is the
total variation (TV) function that promotes gradient sparsity,
and α is the trade-off parameter between TV and `1-norm.
Choosing higher α results in sparser images, while TV
promotes larger components in the image. Because we use
measured noisy system matrix instead of the underlying sys-
tem matrix, ε should be chosen to reflect potential mismatch
between the underlying SM and the used SM, as well as
the noise on the data. Here we used an alternating direction
method of multipliers (ADMM) based algorithm for solving
Eq. (3), where ADMM perform iterative optimization via
splitting Eq. (3) into easier subproblems [6], [17].

In this study, we set the step size of ADMM small to
assure convergence. We chose α value separately for each
method to optimize the image quality in terms of peak signal
to noise ratio (pSNR). We set ε to its optimal value which
also accounts for the mismatch between the used SM and
the reference SM, i.e. ε = ‖Axref − y‖.

III. METHODS

A. Proposed Super-Resolution Method

This study presents an MPI super-resolution technique
based on upsampling of the MPI SM. Specifically, we
propose a CNN based super-resolution method to estimate
HR SMs from LR SM measurements. This approach will
have two main advantages: enhanced SNR efficiency during
calibration measurements at LR, and shortened calibration
time due to fewer number of measurements. The super-
resolution of SM can be formulated as:

A
(i)
CNN = fθ

(
A

(i)
LR + Ñ (i)

)
. (4)

Here, fθ(·) represents the CNN based estimator to be trained.
In this study, we trained a single super-resolution network
for all frequency / angle components i. Because MPI images
usually have much smaller dimensions compared to visual
images, we propose using a relatively compact network
architecture with fewer parameters. Another key difference is
that, MPI SM sensitivity maps are complex-valued. The real
and imaginary components of SM rows were fed as separate
inputs to the network, and the outputs were combined.

In this study, we proposed a deep super-resolution network
that is comprised of Residual Dense Blocks (RDB) of
“Residual Dense Network” (RDN) [15]. Residual and dense
connections improve information flow across the network.
RDBs are comprised of multiple inner densely connected
convolutional layers, which increase the number of features.
Moreover, each RDB has a residual connection from its input
to output. The final inner layer concatenates the additional
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features through a 1×1 convolutional layer to keep the input
and output feature size of the RDB the same. To attain a
compact network, 16 features and 4 inner layers within each
RDB block were included with 4 RDBs. An `1-norm loss
between the network estimate for HR SM and the true HR
SM was used for training. Training details are presented in
the following section.

B. Training

To generate the training set, we simulated an FFL-MPI
system that images a 32×32 mm2 FOV with 6 degrees-steps.
During the simulations, we used MNPs with 0.55 µ0/A/m
magnetic saturation and 300◦K. SF gradient strength and
MNP size were chosen as free parameters. SF was varied
between 0.4 T/m to 1 T/m, while MNP size was varied
between 14 nm and 33 nm. We simulated a sinusoidal drive
field of 26 kHz for a period of 1 ms. Drive field strength was
adapted to scan the whole FOV for the given SF strength. The
relationship between particle magnetization and the applied
magnetic field was represented using Langevin function [18].
The received signal was sampled using 2 MS/s sampling rate,
and only the center frequencies of 2nd to 9th harmonics were
used. In this study, we tried to resolve 32×32 (1 mm / pixel)
images from 8× 8 (4 mm / pixel) measured SMs.

Using various values of MNP size and SF strength,
we generated 100 different SMs. Each SM consists of 8
frequency components, 30 angle components and a real
and imaginary parts (a total of 480 sensitivity maps). We
separated SMs generated with SF strength equal to 1 T/m
up front as the test set, along with randomly selected SMs.
We assumed a 30 dB SNR level with white Gaussian noise
for the SM measurements, based on previous experiments
conducted via our inhouse MPI system [17]. The noise-added
system matrix elements were normalized to span from 0.15
to 0.85 to improve numerical stability in the SR network.

The network was implemented in PyTorch. At each epoch
during network training, we used different noise realizations
to improve robustness to noise. We trained the network for
500 epochs. We used ADAM optimizer with 8×10−3 learn-
ing rate, and 10−4 weight decay. For quantitative comparison
of SM estimation performance, we used nRMSE defined as:

nRMSE = ‖A−Aref‖F /‖Aref‖F . (5)

We also implemented the image reconstruction algorithm
using PyTorch library. For quantitative comparison of image
reconstruction performance, we used pSNR and structural
similarity index measure (SSIM) metrics.

IV. RESULTS

To determine the proper model complexity for the MPI
SM super-resolution task, we first built models of varying
numbers of parameters by changing the number of RDN
feature growth-rate in the network. Optimal model com-
plexity was selected via k-fold cross validation with 5-
folds. SM estimation performance (nRMSE) as a function
of model complexity is illustrated in Fig. 1. As can be seen,

Fig. 1: Number of parameters versus nRMSE for the pro-
posed SR architecture on the validation set. Red dashed line
marks the 58,000 point.

Fig. 2: nRMSE per harmonics frequency for the proposed
SR architecture on the test set.

a canonical L-curve is observed, with the elbow point near
58,000 parameters with an optimal growth rate of 4.

Next, we compared the performance of SM estimation
using the proposed method, bicubic interpolation and per-
forming a HR SM calibration (that is noisy and elicits a 16-
fold increase in scan time). Figure 2 shows estimation perfor-
mance in the test set across harmonics. As expected, nRMSE
is elevated towards higher harmonics for all methods, but
the increases are relatively modest for the proposed method.
Noisy HR measurement only suffers from the decrease in
the SNR, while other methods also have to infer complex
structures at higher harmonics without corresponding mea-
surements. Furthermore, the proposed method outperforms
the two other methods. Hence, it is especially advantageous
to use proposed method for higher harmonics that bears high-
resolution information.

Lastly, we examine the effects of SM estimation on the
subsequent image reconstruction task. Here, we compared
the performance of the proposed method (Aprop) with LR
SM (ALR), HR SM (AHR), noiseless HR SM (Aref ) and
bicubic interpolated SM (Aint). Next, we simulated some
image phantoms that demonstrate the resolution and con-
trast. We first constructed an imaging phantom (xref ), and
simulated the output data using Arefxref and added white
Gaussian noise. We finally reconstructed images using the
generated data and compared the images reconstructed using
different SMs. Figure 3 shows the reconstructed images for
different SMs under 30 dB data SNR. Reconstruction based
on noiseless HR SM reflect an upper limit for calibration and
reconstruction performance. Reconstruction based on noisy
HR measurements yield poor results due to limited SNR
despite the 16-fold longer calibration time. Reconstruction
based on LR SM naturally lead to loss of image details.
While bicubic interpolation SM improves recon quality,
it suffers from loss of high-spatial frequency details. In
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SNR Aref AHR ALR Aint Aprop

10 16.38 15.92 15.26 14.97 16.36
0.64 0.57 0.48 0.44 0.64

20 18.74 15.37 15.39 14.86 18.94
0.77 0.54 0.49 0.43 0.78

30 21.45 17.22 15.40 14.98 22.33
0.82 0.71 0.49 0.45 0.88

TABLE I: Average pSNR and (SSIM) values of reconstructed
images under various SNR settings.

contrast, the proposed method yields superior reconstructions
that are on par with the those based on noiseless HR
SM. Broader comparisons at multiple SNR levels averaged
over 150 Monte Carlo runs are summarized in Table I. As
can be seen, the proposed method consistently outperforms
other methods in terms of pSNR and SSIM. The distinction
becomes clearer as SNR increases.

V. DISCUSSION

In this study, we introduced a learning-based method for
acquiring high-resolution SM within short calibration times
in MPI. The proposed method uses a deep CNN model
to jointly superresolve and denoise SM. MPI images have
small sizes compared to natural images. For this purpose,
we designed a compact network architecture with an order-
of-magnitude fewer parameters compared to vanilla CNN
models in computer vision. To account for complex MPI
data, real and imaginary components of SM rows were
processed separately. Our experiments demonstrate clearly
that the proposed method outperforms conventional low-
resolution SM acquisition and bicubic interpolation in both
SM estimation and image reconstruction. Therefore, the
proposed method holds promise for improving calibration
efficiency and utility of MPI.
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