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Abstract— Continuous glucose monitoring (CGM) sensors are
minimally-invasive sensors used in diabetes therapy to monitor
interstitial glucose concentration. The measurements are col-
lected almost continuously (e.g. every 5 min) and permit the
detection of dangerous hypo/hyperglycemic episodes. Modeling
the various error components affecting CGM sensors is very
important (e.g., to generate realistic scenarios for developing
and testing CGM-based applications in type 1 diabetes simula-
tors). In this work we focus on data gaps, which are portions
of missing data due to a disconnection or a temporary sensor
error. A dataset of 167 adults monitored with the Dexcom
(San Diego, CA) G6 sensor is considered. After the evaluation
of some statistics (the number of gaps for each sensor, the
gap distribution over the monitoring days and the data gap
durations), we develop a two-state Markov model to describe
such statistics about data gap occurrence. Statistics about data
gaps are compared between real data and simulated data
generated by the model with a Monte Carlo simulation. Results
show that the model describes quite accurately the occurrence
and the duration of data gaps observed in real data.

I. INTRODUCTION

Type 1 diabetes is a chronic, metabolic disease in which
the pancreas produces little or no insulin; it is characterized
by elevated levels of blood glucose (BG), which lead, if not
treated, to serious damage to the heart, blood vessels, eyes,
kidneys and nerves [1]. Treatment of diabetes involves diet,
physical activity and accurate exogenous insulin administra-
tions to keep the glucose level in safe range [2]. Since the
70s, the monitoring of BG at home has become possible
thanks to self-monitoring blood glucose (SMBG) devices
that measure the glucose concentration in a small drop of
capillary blood collected by fingerprick. Since these mea-
surements are collected about 3-4 times a day only, they are
not able to detect all critical episodes of hypo/hyperglycemia
occurring in daily life.

More recently, continuous glucose monitoring (CGM) de-
vices were introduced that can measure almost continuously
(e.g. every 5 min) glucose concentration in the interstitial
fluid for several days/weeks [3][4]. The most popular CGM
sensors are minimally-invasive electrochemical sensors that
consist of a needle electrode placed in the subcutaneous tis-
sue of the abdomen or the arm that measures a current signal
originated by glucose oxidation, which is then converted to
a glucose concentration profile using a conversion function.
The glucose concentration readings of the sensor are finally
transmitted to a receiver that displays the measurements in
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real-time to the patient [5]. As in any measurement device,
the glucose values provided by CGM sensors are affected
by errors. While a lot of work has been done to describe
and model the major error components of the CGM sensor,
such as the distortion introduced by the blood-to-interstitium
kinetics, calibration, and random noise errors [4], existing
mathematical descriptions of the occasional transient faults
that affect CGM sensors need further investigation. In partic-
ular, one of the most common faults occurring in CGM data
are data gaps, which are missing data due to an interruption
of communication between the sensor transmitter and the
receiver or to a temporary sensor error. A mathematical
model of data gaps would be important both to characterize
the occurrence of these faults and to mimic the generation
of gaps in diabetes simulators [6].

The aim of this work is to develop a model of data gaps for
a new-generation sensor, the Dexcom G6, developing further
a pioneeristic approach proposed in Facchinetti et al. [7] for
a sensor belonging to a previous technology.

II. DATASET

A. Dataset composition

The dataset was collected in 167 adults with diabetes,
wearing the Dexcom G6 sensor for 10 days, which provides
glucose concentration readings every 5 min. The data are
part of the ones collected in adults during the Dexcom G6
Pivotal trial [8]. For this work, the raw CGM data collected
in the Dexcom G6 Pivotal trial have been processed with
an enhanced algorithm included in the newest version of the
Dexcom G6 sensor, recently approved by the U.S. Food and
Drug Administration, which enhances data availability. Since
36 patients wore two sensors in parallel, 203 CGM traces
are available. For this analysis, only tracks with a minimum
duration of 9 days are considered (172), in order to have
homogeneous data.

B. Analysis of the data gaps

Data gaps are portions of missing data due to a disconnec-
tion or a temporary sensor error; an example of CGM trace
with data gap due to temporary error is reported in Fig. 1.

Considering the available dataset, composed by 172 traces,
we identified 229 gaps due to temporary sensor errors.
Disconnections were not present in the considered dataset. A
key point for the construction of the model of gaps concerns
the analysis of their statistical distribution. We focused on
the three gap statistics shown in Fig. 3: the number of gaps
for each sensor, the distribution of gaps over the monitoring
days and the data gap duration distribution. In the left panel,
we can observe that about the 65% of traces have no gaps,
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Fig. 1: Example of a portion of CGM data containing a
gap between time 10:00 and 12:00 (marked with a red
rectangle).

while most of tracks with gaps present only one event. In the
middle panel it is possible to evidence that the frequency of
data gaps varies with the time from sensor insertion, and in
particular it is higher at the end of the sensor life. In the
right panel the distribution of gap duration is reported: the
median (5th–95th percentile) gap duration is 20 min (5 – 55
min).

III. MODEL OF SENSOR GAPS
A. Two-State Markov Model

The model proposed to describe the gap occurrence is a
two-state Markov model which has been used in the past for
describing gaps of the Dexcom G4 Platinum sensor [7].

Fig. 2: A two-state Markov Model. In state C the system
is regularly functioning, whereas in state D the sensor
measurement is missing due to a data gap.

As shown in Fig. 2, the model is characterized by two
states: the state C (where C stands for ”connected”) describes
the normal functioning of the sensor, while the state D
(where D stands for ”disconnected”) describes the presence
of a data gap. Transitions between states are regulated by 4
probability values: if the sensor is normally functioning, α is
the probability that the next measurement will be missing (C
to D transition), while (1-α) the probability that the normal
functioning will continue (C to C transition). Moreover, if the
sensor is in state D, i.e. a data gap started, β is the probability
that the data gap will continue for the next sample whereas
the return to the sensor normal functioning, i.e. the end of
the data gap, has probability (1-β ). Calling d the duration
of a data gap, the probability that a gap lasts for k samples,
according to this model, is:

P([d = k]) = β
k−1(1−β ) (1)

that corresponds to the k−1 consecutive D-D transitions
followed by a transition from D to C. The transition proba-
bilities α and β can be estimated by maximum likelihood:

α̂ =
# of data gaps

# of regular samples
(2)

β̂ =
# of missed samples preceded by a missed sample

# of missed samples
(3)

This first considered model (Model 1) is very simple; it
is based on the hypothesis that both α and β are constant
in time: this means that here the probability of having a gap
and the probabilities of their duration do not change with
time. Since these assumptions do not reflect the actual pattern
of gaps (Fig. 3), a first adjustment that we can introduce
is making α time-dependent, to improve the description of
the distribution of gap occurrence in the various days of
monitoring. To do that α is defined as a staircase function
of time from sensor insertion t:

α̂(t) = αk in day k from sensor insertion

α̂k =
# of data gaps in day k

# of regular samples in day k
(4)

We can decide to use a different α value for each day
of monitoring k (obtaining 10 different parameters) or to
consider an α value for each group of days with similar gap
probability. So far we adopted this second approach and we
decided to group days 1,7 and 8 together as well as days
2 to 6, resulting in 4 different α parameters: α1,7,8, α2−6,
α9, α10 (Model 2). Of course, this is an operator-dependent
decision, modifiable according to preferences and needs.

B. Monte Carlo Simulation

The model is evaluated with a Monte Carlo approach,
based on two steps:

1) The building of N = 100 simulated datasets, of the
same size of the real one, in which data gaps are
simulated with the identified model;

2) The comparison between the mean±SD of the data gap
statistics obtained for the N=100 simulated datasets
with the data gap statistics of the real dataset.

The gap simulation by the identified model (step 1) is shown
in Fig. 4: for each simulated trace a sample x is extracted
from a uniform distribution [0 1] and it is compared with the
probability α of having a gap. If x is greater than α , there is
no gap now and we have to pass to the next sample, extract
another value x and again compare it with α .

This mini-cycle continues until the condition x ≤ α is
satisfied: in this case, the gap begins and so far it lasts for
one sample only. To determine if the simulated gap will go
on or not, another sample x1 is extracted from a uniform
distribution [0 1] and compared with the probability β that
the gap continues: if the condition x1 ≤ β is satisfied, the
simulated gap continues, we pass to the next sample and we
extract another value for x1. This gap simulation advances
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Fig. 3: Data gap statistics: Number of gap for each sensor (left), gap distribution over the monitoring day (middle), data
gap duration (right).

Fig. 4: Monte Carlo Simulation: if x ≤ α , the simulated
gap begins. To know how many samples it will last, x1 is
compared with the probability β that the gap continues.

until x1 becomes greater than β : in this case, the gap stops
and with the next sample the cycle restarts. We presented
the simulation for the simplest two-state Markov model with
constant parameters, but the approach is the same for more
complex Markov models with time-dependent parameters:
the key point is to adapt α and β according to the specific
case. For example, in the Model 2, α changes with the day
since sensor insertion, so if we are simulating the first day
of monitoring, we will refer to the α1,7,8 value, if we are
simulating the 4th we will take α1−6 and so on.

C. Results

The model performances are evaluated by comparing
the mean±SD of the data gap statistics obtained for the
simulated datasets with the data gap statistics of the real
dataset. Fig. 5 reports the performances of the Model 1,
whose parameters are constant over time and have been
estimated from the data according to Eqs. (2), (3) (Table
I). The red curves correspond to the mean result of the
simulation, the whiskers represent the ± SD of the estimate
and the blue histograms are the gap statistics in the real
dataset.

In the left panel there is the description of the number of
gaps for each sensor; we can observe that the fit is acceptable,
yet not optimal. Indeed, the model estimates that almost the

TABLE I: Model 1: α and β estimated values.

α̂ β̂

4.65e-04 0.7082

30% of traces has no gaps, while in the real dataset about
the 65% of CGM traces does not contain gaps. Moreover,
the number of traces with 1, 2, or 3 events are overestimated
by the model.

In the middle panel the distribution of gaps over the
monitoring days is represented. While in the real distribution
the probability of having a gap in the last days from the
sensor insertion is higher than in the first ones, the model
simulates gaps uniformly over the different days. This is due
to the fact that α is constant over time.

In the right panel the distribution of gap duration is
reported; the log-scale is used in order to be able to appre-
ciate the model performance also for low probability values,
that corresponds to long gap durations. The model, being
characterized by a single β parameter, fails to describe the
peak of the distribution at 20 min, and simulates only a
decreasing linear trend. In addition to the fit of the model, the
panel shows the curve obtained from the theoretical formula
that calculates the probability of having a gap that lasts for k
samples depending on β (Eq. (1)): since this theoretical curve
(green curve) and the result of the simulation (red curve) are
overlapping, we can confirm that the simulation algorithm is
well defined and also that 100 repetitions in the Monte Carlo
simulation are sufficient to obtain the theoretical results.

As expected, the performances of Model 1 are not so
good; therefore, we consider the second model, Model 2,
that introduces a time-dependence for α . According to the
eq. (4), the 4 parameters defining the α staircase function
have been estimated and are reported in Table II. The β

value for Model 2 is the same of Model 1 (β̂ = 0.7082).
This adjustment improves the description of the distribution
of gaps over the monitoring days (middle panel in Fig. 6),
whereas the description of the number of gaps per sensor
and the data gap duration is comparable between Model 1
and 2.
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Fig. 5: Model 1 performances: Number of gaps for each sensor (left), gap distribution over the monitoring day (middle),
data gap duration (right).The red curves correspond to the mean result of the simulation, the whiskers represent the interval
mean ± SD of the estimate and the blue histograms are the gap statistics in the real dataset.

Fig. 6: Model 2 performances: Number of gaps for each sensor (left), gap distribution over the monitoring day (middle),
data gap duration (right).The red curves correspond to the mean result of the simulation, the whiskers represent the interval
mean ± SD of the estimate and the blue histograms are the gap statistics in the real dataset.

TABLE II: Model 2: α values estimated for each
group of days.

α̂1,7,8 α̂2−6 α̂9 α̂10

4.06e-04 7.67e-05 9.11e-04 2.20e-03

IV. CONCLUSIONS

We developed a model for the description of data gaps
caused by temporary sensor errors for the Dexcom G6 sensor
in the adult population. We started from a simple two-state
Markov model already used for the description of data gaps
in past generation sensors, but its performances resulted
not satisfactory for the Dexcom G6 sensor. Therefore, we
improved the model by making α dependent on time. This
second model was able to well describe the distribution of
gap occurrence over the monitoring days. In future works,
the addition of other states to the model will be investigated,
in order to improve also the description of the distribution of
gap duration and the number of gaps for each trace. More-
over, the model will be extended to the pediatric population
that might present data gaps with different characteristics.
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