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Abstract— Stroke is one of the main causes of disability in
human beings, and when the occipital lobe is affected, this leads
to partial vision loss (homonymous hemianopia). To understand
brain mechanisms of vision loss and recovery, graph theory-
based brain functional connectivity network (FCN) analysis
was recently introduced. However, few brain network stud-
ies exist that have studied if the strength of the damaged
FCN can predict the extent of functional impairment. We
now characterized the brain FCN using deep neural network
analysis to describe multiscale brain networks and explore their
corresponding physiological patterns. In a group of 24 patients
and 24 controls, Bi-directional long short-term memory (Bi-
LSTM) was evaluated to reveal the cortical network pattern
learning efficiency compared with other traditional algorithms.
Bi-LSTM achieved the best balanced-overall accuracy of 73%
with sensitivity of 70% and specificity and 75% in the low
alpha band. This demonstrates that bi-directional learning
can capture the brain network feature representation of both
hemispheres. It shows that brain damage leads to reorganized
FCN patterns with a greater number of functional connections
of intermediate density in the high alpha band. Future studies
should explore how this understanding of brain FCN can be
used for clinical diagnostics and rehabilitation.

I. INTRODUCTION

Stroke of the brain is a common cause of death and
disability in the elderly, the number of which is steadily
increasing. Until 2013, there were almost 25.7 million stroke
survivors, 6.5 million deaths from stroke worldwide [1].
About 30-50% of the stroke cases have damage of the visual
pathway which can lead to homonymous hemianopia (HH),
in which the same half of the visual field in both eyes is
lost. This visual field defect significantly decreases daily
functional abilities and quality of life [2]. with secondary
risks of falling, lose the ability to read, and anxiety and
depression [3].

Graph theory-based network analysis is a fundamental
methodology in neuroscience to explore brain functional
connectivity (FCN) network synchronization and reorgani-
zation after a stroke. It is typically characterized by graph
parameters such as strength, which is the sum of weights of
links connected to one node [4].

Vision loss in the blind is a result of both, primary loss
of neurons through tissue damage, and a breakdown of
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synchronization in brain networks [5]. Disturbed synchro-
nization in patients with vision loss might therefore aggravate
the functional consequences of reduced visual input [6].
Wang et al. [7] reported HH patients with left primary
visual cortex damage have less brain functional activity than
healthy subjects. Another study [8] showed that the newly
forming FCN connections and compensatory connections
mainly originated from the infarction area and influences
contralesional cortices.

Weighted graphs with thresholds are able to reveal the
level of efficiency in large-scale networks analysis [9], allow
an easy extraction of meaningful information [10] compared
to binary graphs. Fornito et al. [11] reported network scaling
effects in human resting-state fMRI under the proportional
thresholds from 5% to 40%. Buckner et al. [12] reported the
hubs for adaptive task control at the proportional thresholds
from 2% to 10%. Heuvel et al. [13] reported the efficiency
of functional brain networks and intellectual performance
from a correlation coefficient of r=0.3 to 0.5. In all these
studies the authors used a rather narrow range of network
density, and this could be a limitation with risks of poor or
faulty interpretations. Previous graph theory studies on HH
[7] [8] used scalp electrode connections without considering
the network density; the stability of such patterns is still
unknown. Therefore, in the present study, we characterized
the cortex level’s brain functional network dynamics in
HH patients after a stroke, using multiscale proportional
threshold-based densities for brain connectivity matrix.

Stroke biomarkers could provide a diagnostic inference for
effective personalized therapy in stroke patients. Several re-
searchers have proposed various prediction biomarkers such
as fluid and tissue analysis for stroke prevention [14], [15].
Others had utilized the brain functional network connectivity
to predict the impairments in stroke [16]–[18]. Moreover,
deep learning technology has been widely applied in brain
disease prediction [19]–[21]. Therefore, we evaluated the
potential for predicting the functional loss in patients with
stroke using deep learning technology through the brain
network. There are many and highly sophisticated deep
learning methods in the market; however, deep learning
requires high computation power and colossal data size,
limiting its application in brain science. Especially the use
of small amounts of high-dimensional data is still facing
significant challenges.

LSTM (Long Short-Term Memory) [22] was a particular
type of recurrent neural network (RNN) [23] that is often
used to model contextual information in natural language
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processing tasks. RNN models feed the information into the
network only in a one-directional manner. In the present
study of stroke patients, we consider both internal connec-
tions and external isolation between the lesion and intact
hemisphere of the brain to evaluate if the Bi-LSTM is able to
capture a better network feature presentation in bi-directional
learning from both hemispheres.

We hypothesize that the Bi-LSTM can learn brain network
patterns by paying specified attention to the FCN state of the
lesioned as well as the intact hemisphere. We therefore im-
plemented the Bi-LSTM model along with other traditional
algorithms on the multiscale brain functional connectivity
matrix to reveal brain network alteration patterns in occipital
stroke patients.

Specifically, we addressed the following two questions:
(i) how does the frequency band and the density of the
brain connectivity matrix influence the performance of the
deep neural network for predicting stroke patients, and (ii)
how does the predictive performance of the model fit the
characteristics of electrophysiological data using the statistics
and visualization of the FCN “strength” changes in the
middle occipital node.

II. METHOD

A. Subject

We recruited 24 Patients with partial vision loss as a result
of occipital stroke(see more detail [24]) and 24 age-matched
healthy subjects with normal vision or corrected to normal
vision. All subjects were instructed to keep their eyes closed
while resting-state EEG was recorded for the duration of five
minutes (Tab I). Patient and control subjects were statistically
comparable in age (p>0.05). High dense array EEG was
recorded using a HydroCell GSN 128 channel net (EGI
Inc.). The ethics committee of the University of Magdeburg
approved the study In compliance with the declaration of
Helsinki, all subjects were asked to sign a consent form.

Fig. 1. We evaluated a two-layer Bidirectional LSTM (neurons: 58, 58)
algorithm and compared it with other traditional algorithms such as deep
forward neural network architecture with three hidden layers (neurons: 256,
128, 32), support vector machine (SVM), and random forest (RF). Data
input shape (1× 116) from AAL atlas. Output label was 1: patient and 0:
control subject.

B. Data Prepossessing

A digital 1-145 Hz bandpass filter was applied as well
as a 50 Hz notch filter. The data was down-sampled to 250
Hz and then referenced by the common average reference
method. EEG recordings were segmented into 2 seconds long

TABLE I
PATIENT INFORMATION SUMMARY

Total Lesion side Age Lesion Months
Patient 24 10 left, 14 right 58.375±10.87 40.95±39.21
Control 24 NA 57.375±10.56 NA

per epoch. Components of eye-blinks and cardiac activity
were removed by independent component analysis (ICA).
The signal was decomposed as six frequency bands: Delta (1-
3Hz), Theta (4-7Hz), Alpha1 (8-10Hz), Alpha2 (11-13Hz),
Beta1 (14-21Hz), Beta2 (22-30Hz).

C. Source Reconstruction

The forward model was calculated using the symmetric
boundary element method (BEM) [25]. The inverse model
was calculated with a beamforming method using the par-
tial canonical correlation method [26], which implements
Dynamical Imaging of Coherent Sources (DICS) [27]. The
default template for MRI was from MNI (Colin 27) at 8mm
resolution [28]. The AAL-VOIs atlas (AAL) is an automatic
anatomical labeling result [29], which includes 120 structure
definitions, and 116 were used in this study.

D. Brain Connectivity and Threshold

Functional connectivity was based on the statistical syn-
chronization to quantify the interaction between different
brain region pairs [30]. Here we used the imagery part of
coherence [31], shown in equation (1), which is insensitive
to false connectivity arising from volume conduction to
measure the functional connectivity with resting-state EEG
data.
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where Sn
1 (f, t) and Sn∗

2 (f, t) are the frequency-decomposed
EEG data from two specific regions. We adopted a parcella-
tion scheme with the AAL atlas and average the connectivity
values between sets of dipole pairs that belong to a given
pair of parcels. Finally, the connectivity matrix (116× 116)
was sparsed from density 0.1 to 1 per frequency band for
patients and controls. All self-connections were removed
before analysis, which means only[0.1 ∼ 1] strongest weight
edges were kept for each subject in both groups consistently.
In this case, the density defined as the proportion of existing
edges out of all possible edges was equal for each graph
per subject [32]. Fixing the probability for an edge also
excludes the criteria of Erdős-Rényi random networks for
group analysis [33].

E. Evaluation method

A deep neural network (DNN) is an artificial neural
network (ANN) with multiple layers between the input
and output layers [34]. The hidden layer and activation
functions can improve the expressive ability. In this paper,
we implemented a two hidden layer (58, 58) Bi-LSTM
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model and a three hidden layers (256, 128, 32) deep forward
network with ’RELU’ activation function. The support vector
machine (SVM) and Random forest (RF) were referred as the
baseline shown in Fig. 1. Brain node strength was calculated
per frequency and density, then we proposed three feature
extraction methods: Model I): The node strength of control
subjects between the left and right hemispheres was pooled.
The brain of the right stroke patient was flipped so that only
the lesion hemisphere and intact hemisphere were showed.
Model II): The controls were not pooled, and the patient data
was flipped. Model III): The controls were not pooled, and
the patient data was not flipped (see Tab II).

F. Training the model

All training sessions were implemented in Google Colab,
Sklearn, and Keras, 48 subject data was shuffled before a
three-folder cross-validation in the training session. For both
Bi-LSTM and DNN, we took Adam as the optimizer and
binary-cross entropy as the cost function. The performance
was evaluated with three metrics: overall accuracy, sensi-
tivity, and specificity. A non-parametric Mann- Whitney U-
test was performed between the lesion hemisphere and the
control hemisphere and between the intact hemisphere and
control hemisphere. Data prepossessing, source reconstruc-
tion, and brain connectivity were conducted with the Fieldtrip
toolbox [35].

III. RESULT

A. Model performance

We evaluated Bi-LSTM, DNN, SVM, and RF to scout
for appropriate prediction biomarkers (Frequency bands or
network density), which can identify the presence of vision
impairment in patients with occipital stroke. As shown in
Tab II, the DNN yielded the highest accuracy (81%) in
model I; however, the sensitivity (67%) was relatively low
and the specificity was significantly higher (96%). This
demonstrates that pooling the left and right hemispheres for
the controls may lead to an over-fitting in testing data. The
same phenomenon appeared in SVM performance. The Bi-
LSTM shows a balanced performance between sensitivity
(70%) and specificity (75%) with an overall accuracy of
73% in model II, suggesting that flipping the hemisphere
could enhance the feature patterns learning during training.
As shown in Fig. 3, the log loss of model II shows the Bi-
LSTM demonstrated the ability to learn the feature patterns
and continuously reduce losses. For RF, the result is not
satisfied with worst performance.

B. Biomarker in Brain network

Stroke biomarkers can be used as a guiding tool for
more effective personalized therapy [14], and help improve
the diagnosis of stroke and determine the cause of stroke
[15]. Unlike the traditional approach, we aimed to find
the characteristics representing the network reorganization
after a stroke with a bi-directional LSTM algorithm. This
algorithm has been used for natural language processing for
a long time. Here, we explored the two-directional feature

TABLE II
FINAL PEAK PERFORMANCE OF THE EVALUATED MODELS

Model Pooled
Control

Flipped
Patient Accuracy Sensitivity Specificity

SVM I Yes Yes 67% 58% 75%
II No Yes 73% 63% 83%
III No No 67% 54% 70%

RF I Yes Yes 63% 54% 70%
II No Yes 63% 58% 63%
III No No 60% 63% 41%

DNN I Yes Yes 81% 67% 96%
II No Yes 70% 75% 67%
III No No 67% 75% 58%

BiLSTM I Yes Yes 63% 58% 67%
II No Yes 73% 70% 75%
III No No 63% 63% 63%

learning efficiency from intact and lesion hemispheres. As
shown in Fig. 3, the peak accuracy was achieved in the
low alpha band from density 0.3 to 0.5 with Bi-LSTM. The
result is compatible with the hypothesis that brain network
reorganization in the low alpha band after a stroke can help
identifying occipital stroke patients. The network threshold
should be taken into account for brain network analysis or
biomarkers prediction in neurological disease.

In our patients, the middle occipital lobe area is most
affected by ischemic stroke (Posterior cerebral artery in-
farcts). To further confirm the patterns from the network
characteristics, we specifically selected the middle occipital
lobe for further statistical analysis. As shown in Fig. 4,
the strength of the alpha band in both lesion and intact
hemisphere was found significantly lower than in controls
for a density>0.3, which is consistent with our prediction
result.

IV. DISCUSSION

A correct diagnosis of ischemic stroke and its causes
are essential to treat and prevent stroke [15]. While MRI
images used in the clinic to identify the lesion location
are structurally meaningful, they provide no information
about the functional state of the tissue at or around the
lesion site (locally) or in other brain regions (globally).
This can only be achieved with EEG recordings that pro-
vide electrophysiological information about the activity of
neurons and their interactions. Therefore, assessing brain
network reorganization in a quantitative manner offers a new
“functional” dimension to characterize brain damage and
recovery. Traditional biomarkers such as blood, other body
fluids, or tissues have been proposed to predict neurological
disease states physiologically [14]. In contrast, the present
study aimed to find a ’biomarker’ based on multiscale brain
network and deep neural network. We evaluated pattern
learning efficiency of Bi-LSTM with bidirectional vector
from two hemispheres. The result demonstrates that the brain
node strength in the low and high alpha band could be
utilized for predicting functional (vision) loss in occipital
stroke patients, and the Bi-LSTM achieved an excellent per-
formance which was more specific and effective than other
traditional algorithms of hemisphere pattern learning. The
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Fig. 2. The plot shows the low and high alpha band strength distribution from density 0.1 to 1 in the middle occipital lobe. This dynamic change of
network properties shows that the reorganization of the brain after the damage is mostly based on the formation of massive weak connections in the high
alpha band. In contrast, the low alpha band did not show massive connections. From the evaluation models, SVM learned feature patterns from the high
alpha band, and Bi-LSTM learned low alpha feature patterns and achieved a balanced performance between sensitivity and specificity.

Fig. 3. Compared to the Bi-LSTM, the DNN shows a slice better
performance in model I in the high alpha band. However, here the log
loss is relatively stable and higher than the Bi-LSTM. Bi-LSTM shows a
balanced performance between sensitivity (70%) and specificity (75%), with
an overall accuracy of 73% in model II in the low alpha band. Eliminating
the structure influence of individual algorithms, the result suggests that
flipping the patient’s hemisphere could enhance the feature pattern learning,
while the controls should not be pooled.

result from Model II illustrates that hemisphere flattening in
unilateral stroke patients and no-pooling in controls has a
palpable classification performance to discriminate between
visually impaired stroke patients and normal subjects.

Alpha phase synchronization is known to relate to differ-
ent behavioral states and neuronal effects of visual-spatial
attention [36]. With the present study we confirmed the
role of the high alpha band in visual processing, because in
this frequency band brain damage leads to reorganized FCN
patterns with a greater number of functional connections
of intermediate density(see Fig. 2). Future studies should
explore how this understanding of brain FCN can be used for
clinical diagnostics and rehabilitation. This new perspective
is consistent with earlier findings that both low and high
alpha brain network alternation are critical in brain network
reorganization of stroke patients [7]. Our future studies will
evaluate with if and how the strong connections from the
lesion side can handle information processing after a stroke;
and how the contralateral, “intact”, functional regions might
help to compensate for the loss of vision.

Fig. 4. Left part: Z-value distribution between the lesion /intact hemisphere
and the control hemisphere at the middle occipital lobe. Significant patterns
show that both intact hemispheres have higher strength in the alpha band (8-
13 Hz) than controls when selecting a density>0.3 (red-box). The strength
in the low beta band (14-21) of both lesion and intact hemisphere was lower
than the controls.

More generally speaking, deep learning technology with
optimized structures can help extract functionally relevant
parameters by using FCN pattern characterization without
predefined features. Bi-LSTM achieved a more balanced
performance (in both accuracy and log loss) than other
methods. Considering the mechanism of Bi-LSTM in natural
language processing, we propose that the Bi-LSTM method
is a useful procedure for capturing brain network states of
the lesion and intact hemisphere. Integration of bidirectional
data input (intact vs. lesioned hemisphere) though LSTM
cell can enhance the performance and stability of the model.
Although the model’s final performance did not reach a high
accuracy rate for all models in this study, we believe that the
expected results can be obtained using a larger data sample
with Bi-LSTM. Moreover, the performance can inspire us
into the understanding of brain network reorganization after
an occipital stroke in the clinical context of diagnosing vision
loss and predicting its recovery potential.

839



V. CONCLUSION

This study evaluated the potential of predicting vision
impairment in stroke patients with deep neural networks
and multiscale brain networks. The prediction model and
statistical analysis results show that brain node strength in
the low and high alpha band under specific density could
be a predictor to characterize brain network reorganization
in stroke patients. The Bi-LSTM gained a balanced perfor-
mance between sensitivity and specificity, proving its feature
learning capacity for hemisphere feature extraction. Further
investigation are needed to extend this algorithm with more
data samples and optimized network structure. In the future,
these results may inspire other to gain more insight in stroke
clinical diagnostics and interventions, and it highlights the
value of Bi-LSTM in functional predictions of brain diseases.
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[10] M. A. Serrano, M. Boguñá, and A. Vespignani, “Extracting the
multiscale backbone of complex weighted networks,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 106, no. 16, pp. 6483–6488, 2009.

[11] A. Fornito, A. Zalesky, and E. T. Bullmore, “Network scaling effects
in graph analytic studies of human resting-state fmri data,” Frontiers
in systems neuroscience, vol. 4, p. 22, 2010.

[12] R. L. Buckner and K. A. e. a. Johnson, “Cortical hubs revealed by
intrinsic functional connectivity: mapping, assessment of stability, and
relation to alzheimer’s disease,” The Journal of neuroscience, vol. 29,
no. 6, pp. 1860–1873, 2009.

[13] M. P. van den Heuvel, C. J. Stam, R. S. Kahn, and H. E. Hulshoff Pol,
“Efficiency of functional brain networks and intellectual performance,”
The Journal of neuroscience, vol. 29, no. 23, pp. 7619–7624, 2009.

[14] S. J. Kim, G. J. Moon, and O. Y. Bang, “Biomarkers for stroke,”
Journal of stroke, vol. 15, no. 1, p. 27, 2013.

[15] G. C. Jickling and F. R. Sharp, “Biomarker panels in ischemic stroke,”
Stroke, vol. 46, no. 3, pp. 915–920, 2015.

[16] J. Lindow, M. Domin, M. Grothe, U. Horn, S. B. Eickhoff, and
M. Lotze, “Connectivity-based predictions of hand motor outcome
for patients at the subacute stage after stroke,” Frontiers in human
neuroscience, vol. 10, p. 101, 2016.

[17] L. Jiang, H. Xu, and C. Yu, “Brain connectivity plasticity in the motor
network after ischemic stroke,” Neural plasticity, vol. 2013, 2013.

[18] J. S. Siegel, L. E. Ramsey, A. Z. Snyder, N. V. Metcalf, R. V. Chacko,
K. Weinberger, A. Baldassarre, C. D. Hacker, G. L. Shulman, and
M. Corbetta, “Disruptions of network connectivity predict impairment
in multiple behavioral domains after stroke,” Proceedings of the
National Academy of Sciences, vol. 113, no. 30, pp. E4367–E4376,
2016.

[19] A. Wada, K. Tsuruta, R. Irie, K. Kamagata, T. Maekawa, S. Fujita,
S. Koshino, K. Kumamaru, M. Suzuki, A. Nakanishi et al., “Differenti-
ating alzheimer’s disease from dementia with lewy bodies using a deep
learning technique based on structural brain connectivity,” Magnetic
Resonance in Medical Sciences, vol. 18, no. 3, p. 219, 2019.

[20] H.-I. Suk, C.-Y. Wee, S.-W. Lee, and D. Shen, “State-space model
with deep learning for functional dynamics estimation in resting-state
fmri,” NeuroImage, vol. 129, pp. 292–307, 2016.

[21] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and
F. Meneguzzi, “Identification of autism spectrum disorder using deep
learning and the abide dataset,” NeuroImage: Clinical, vol. 17, pp.
16–23, 2018.

[22] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] C. Gall, K. Silvennoinen, and B. A. Sabel, “Non-invasive electric
current stimulation for restoration of vision after unilateral occipital
stroke,” Contemporary clinical trials, vol. 43, pp. 231–236, 2015.

[25] M. Fuchs, M. Wagner, and J. Kastner, “Boundary element method
volume conductor models for eeg source reconstruction,” Clinical
neurophysiology, vol. 112, no. 8, pp. 1400–1407, 2001.

[26] B. R. Rao, “Partial canonical correlations,” Trabajos de estadistica y
de investigación operativa, vol. 20, no. 2-3, pp. 211–219, 1969.

[27] J. Gross, J. Kujala, and Hamalainen.etc, “Dynamic imaging of co-
herent sources: Studying neural interactions in the human brain,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 98, no. 2, pp. 694–699, 2001.

[28] C. J. Holmes and Hoge.etc, “Enhancement of mr images using registra-
tion for signal averaging,” Journal of Computer Assisted Tomography,
vol. 22, no. 2, pp. 324–333, 1998.

[29] N. Tzourio-Mazoyer and Landeau, “Automated anatomical labeling of
activations in spm using a macroscopic anatomical parcellation of the
mni mri single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–
289, 2002.

[30] E. Pereda, R. Q. Quiroga, and J. Bhattacharya, “Nonlinear multivariate
analysis of neurophysiological signals,” Progress in neurobiology,
vol. 77, no. 1-2, pp. 1–37, 2005.

[31] G. Nolte, O. Bai, and Wheaton, “Identifying true brain interaction
from eeg data using the imaginary part of coherency,” Clinical
neurophysiology, vol. 115, no. 10, pp. 2292–2307, 2004.

[32] M. Bola and B. A. Sabel, “Dynamic reorganization of brain functional
networks during cognition,” NeuroImage, vol. 114, pp. 398–413, 2015.

[33] B. C. M. Van Wijk, C. J. Stam, and A. Daffertshofer, “Comparing
brain networks of different size and connectivity density using graph
theory,” PloS one, vol. 5, no. 10, p. e13701, 2010.

[34] Y. Bengio, Learning deep architectures for AI. Now Publishers Inc,
2009.

[35] R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “Field-
trip: Open source software for advanced analysis of meg, eeg, and
invasive electrophysiological data,” Computational intelligence and
neuroscience, vol. 2011, p. 156869, 2011.

[36] M. Lobier, J. M. Palva, and S. Palva, “High-alpha band synchroniza-
tion across frontal, parietal and visual cortex mediates behavioral and
neuronal effects of visuospatial attention,” Neuroimage, vol. 165, pp.
222–237, 2018.

840


