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Abstract— The feasibility of electroencephalography (EEG)
analysis in evaluating mental workload of gaming was studied
by carrying out a proof-of-concept type experiment on a set
of EEG recordings, with a bespoke tool developed for the
purpose. The EEG recordings (20 recordings in total) that
were used in the experiment had been acquired by groups of
students and staff of Tampere University during n-back gaming
sessions, as part of course projects. The ratio of theta and
alpha power, calculated over the EEG signal segments that were
time-locked to game events, was selected as EEG metrics for
mental load evaluation. Also, Phase Locking Value (PLV) was
calculated for all pairs of EEG channels to assess the change in
phase synchronization with the increasing difficulty level of the
game. Wilcoxon rank-sum test was used to compare the metrics
between the levels of the game (from 1-back to 4-back). The
rank-sum test results revealed that the theta-alpha power ratio
calculated from the frontal derivations Fp1 and Fp2 performed
as a confident indicator for the evaluation and comparison of
mental load. Also, phase locking between EEG derivations was
found to become stronger with the increasing difficulty level
of the game, especially in the case of channel pairs where the
electrodes were located at opposite hemispheres.

I. INTRODUCTION

Mental workload can be considered as an objective task
demand imposed on a person’s cognitive resources. Cognitive
load theory (CLT) provides a more profound theoretical
framework that is based on the cognitive architecture com-
prised of a working memory and a long-term memory,
and that specifies mental workload according to its origins
(intrinsic, extraneous or germane workload). The measures
for mental workload can be divided into the categories of
subjective measures, performance measures and psychophys-
iological measures. Electroencephalography (EEG) repre-
sents an indicator for the last category. Also, EEG provides
convenient means for monitoring and evaluating mental load,
without causing any significant interference to the subject
under study [1]–[4]. EEG metrics for mental load assess-
ment can be calculated from power spectrum, event related
potential [5] or brain connectivity measurements. Gaming
quite perfectly complements the EEG in the formation of a
framework for studying the mental load as, in general, load
imposing conditions in a game can be easily adjusted, and
basic setups for such study environments are rather simple
[6], [7].

1Ville Ahonen was with the Faculty of Information Technology and
Communication Sciences until 2020, Tampere University, Pori, Finland

2Marko Leino is with the Faculty of Information Technology
and Communication Sciences, Tampere University, Pori, Finland
marko.leino@tuni.fi

3Tarmo Lipping is with the Faculty of Information Technol-
ogy and Communication Sciences, Tampere University, Pori, Finland
tarmo.lipping@tuni.fi

While variables such as heart rate, blood pressure or
skin impedance assess the short-term immediate reaction to
the increase of task difficulty [8], direct monitoring of the
function of central nervous system using EEG, for example,
is required to evaluate long-term mental workload and detect
changes leading to burnout or depression.

II. MATERIALS AND METHODS

In order to determine mental workload from EEG re-
sponses, the n-back memory game was deemed as an ap-
propriate test setting [4], [5], [9]. A brief description of the
game is provided in Section II-A, and the details of the
measurement setup and procedure are described in Section
II-B.

A. N-back game

The n-back memory game was introduced by Kirchner
[10] and it has been a widely used tool since then in
numerous cognitive performance related studies, especially
in those related to working memory performance and mental
load.

In the n-back memory game a person is presented se-
quential stimuli that are perceptually identifiable, e.g. visual
stimuli consisting of the set of alphanumerical characters or
auditory stimuli consisting of the set of auditory probes. The
person playing the game is requested to respond, e.g. by
pressing a button, when the current stimulus being presented
was presented also n items back. The matching stimulus is
called the target whereas a non-matching stimulus is called
a non-target. The outcome that reflects the task performance,
like the number of correct and incorrect responses, as well as
the response delay, can be then used by an experimenter to
further analyze the cognitive performance. Game difficulty
is controlled with the value of n, i.e. the higher the value the
more difficult the game becomes as it imposes higher load
on the working memory. When the value of n is zero, the
stimulus used as a target is predefined.

B. Setup

The EEG measurements and stimuli related data used
in this experiment were acquired by groups of Tampere
University students and staff, as a part of course projects
during the years 2019 and 2020. The test setup for course
projects comprised the following components: a laptop, n-
back game and EEG recording software running on the
laptop, and an EEG electrode cap with a measurement unit
connected wirelessly to the laptop.

The version of n-back game used in this experiment em-
ployed simple visual stimuli as single digits (0-9) displayed
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TABLE I
6-CHANNEL AND 19-CHANNEL SETUPS

Setup Connected EEG channels

6-channel Fp1, Fp2, C3, C4, O1, O2
19-channel Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7,

P3, Pz, P4, P8, O1, O2

on the computer screen in 3 second intervals. The subjects
were supposed to click the mouse button when a displayed
number was the target. Gaming sessions were always started
with 1-back, proceeding up to 4-back, with a short break
between the levels. The duration for each level was a few
minutes. All game events during the sessions, i.e. n-back
game level changes, displayed numbers and mouse clicks,
were stored into a log file.

The EEG during the n-back gaming sessions, was mea-
sured and recorded with the Enobio® (Neuroelectrics, Spain)
EEG system (see [11] for more information). The version of
the measurement device that was used in the course projects
carried out in 2019 supported up to 8 channels, and the
version used in the projects in 2020 supported up to 20
channels.

In total, the projects covered 20 n-back gaming sessions,
for which the EEG measurements and game events related
data were recorded. A setup with 6 connected EEG channels
was used in 18 of these sessions, and a higher density setup
with 19 connected EEG channels in two of the sessions. The
EEG signal sampling rate was 500 Hz for all recordings, and
in all cases the ECG was recorded simultaneously with the
EEG. The connected EEG channels in both the 6-channel
and 19-channel setups are shown in Table I. The channels
in the 6-channel setup are a subset of the channels in the
19-channel setup.

C. EEG processing

A MATLAB (version R2019a) [12] based tool was created
for processing EEG recordings and for calculating EEG met-
rics — for the mental load evaluation — from the processed
recordings. The source code for the tool can be found in
the GitHub repository [13]. The tool was divided into two
main level logical entities: the validator covering the initial
processing of EEG recordings and the calculator covering
the subsequent EEG metrics calculation from the processed
EEG recordings. All EEG channels in all EEG recordings
were filtered, cleaned and validated, in this order, by the
respective algorithms that are described in the following.

Built-in MATLAB functions firpmord and firpm are ap-
plied in the implemented filtering algorithm (PMFilter, see
[13]) to design a bandpass filter. The bandpass filter was
deployed with the lower cut-off frequency set at 1 Hz and
the upper cut-off frequency at 44 Hz. The artefact cleaning
algorithm (AlgWaveletCleaner, see [13]) employs discrete
wavelet transform (DWT) based multiresolution analysis
(MRA), by the application of MATLAB functions wfilters
and modwt. The cleaning algorithm was deployed with the

low-pass and high-pass decomposition and reconstruction fil-
ters associated with the MATLAB pre-defined wavelet ”db2”
from the Daubechies wavelet family. With this setting the
AlgWaveletCleaner algorithm executes MRA decomposition
for the EEG signals, and thresholding for the decomposed
detail components. The thresholding is carried out in the
manner that samples of the detail components are zeroed, if
they have an amplitude higher than 2.5 times the standard
deviation calculated over the sample window of duration of
10 seconds and which is moved in 5 second steps. After
the thresholding, the inverse DWT, using the MATLAB
function imodwt, is performed to reconstruct the (cleaned)
EEG signal.

After filtering and cleaning, the validation algorithm (Al-
gChannelValidator, see [13]) loops through the channel spe-
cific EEG signal segments, or epochs, and compares the
average power of each epoch to the average power of the
whole channel. If the average power of an epoch is more
than two standard deviations away from the average channel
power, the epoch is marked as invalid and will be omitted
in the EEG metrics calculation. The epoch length was set to
one second with 50% overlap.

D. Mental workload metrics

Two kinds of EEG metrics were calculated: the ratio
of signal power in theta frequency band to that of alpha
frequency band (Theta-Alpha Power Ratio, TAPR) and the
Phase Locking Value (PLV) between channel pairs. The
TAPR measure follows the Cognitive Load Index (CLI)
method introduced by Holm et al. [14] with the difference
that the ratio is calculated for each channel separately while
in CLI two channels, Fz and Pz are involved. The metrics are
calculated over signal segments that are time locked to game
events, starting 100 ms before a number was displayed with
the duration of 1000 ms. The power spectral density (PSD)
estimate was calculated using the Welch’s method (MATLAB
function pwelch). Hamming window of length 128 samples
with the overlap of 64 samples was used.

The phase locking value is a measure of synchronicity
between the instantaneous phases of two time series. It was
introduced for brain signal analysis by Lachaux et al. [15].
Prior to calculating the PLV, the EEG signal is filtered using
a narrow-band band-pass filter so that PLV of different EEG
rhythms can be assessed. The metric was calculated in the
following steps (see [16]):

1) Signal segments of EEG channels i and j were band-
pass filtered with passband cutoff frequencies f1 and
f2 to obtain xf1,f2

i and xf1,f2
j

2) The instantaneous phases of the narrow-band signals
were obtained using the Hilbert transform: 6 xf1,f2

i =

ϕ
{

H
{
xf1,f2
i

}}
and 6 xf1,f2

j = ϕ
{

H
{
xf1,f2
j

}}
3) PLV was calculated as:

PLVf1,f2
xixj

=
∣∣∣Avg

{
exp

{√
−1
(
6 xf1,f2

i − 6 xf1,f2
j

)}}∣∣∣ ,
where Avg{·} denotes averaging over the time samples
of the signal segment.
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In our study we calculated PLV for frequency bands 2−4
Hz, 4− 6 Hz, 6− 8 Hz, 8− 10 Hz, 10− 12 Hz, 12− 16 Hz
and 16− 20 Hz. The most significant results were obtained
for the frequency band 2− 4 Hz.

III. RESULTS

TAPR values, related to n-back game events, were cal-
culated per n-back game level for each channel in each
recording. Outliers were removed by employing the median
absolute deviation (MAD) method [17]. TAPR values more
than three MAD values away from the median were consid-
ered as outliers. The channel specific TAPR values for the
same n-back game level were combined from all recordings
and are shown in Figure 1. The left-sided Wilcoxon rank-
sum test was then separately performed for each pair of the
n-back levels of the combined TAPR values. The p-values
corresponding to the obtained rank-sum statistics are listed
in Table II.

Fig. 1. Theta-alpha power ratio (TAPR) of all channels of combined
recordings, for n=1,2,3,4. The median of TAPR for each n-back level is
given in parenthesis.

It can be seen from Figure 1 that the difference between
the medians of TAPR values for different n-back levels are
highest in the Fp1 and Fp2 channels, whereas the medians in
all the other channels lie on an almost flat line. This better
TAPR performance for the Fp1 and Fp2 channels is evident
by statistically significant p-values, at the significance level
0.001, for TAPR comparison between each n-back level,
except between the 3-back and 4-back (Table II).

In Figure 2 the results for the PLV analysis are presented.
The difference in the PLV metric between 1-back and 3-
back levels of the game are presented for frequency band
2− 4 Hz. In the figure, channel pairs for which the p-value
obtained using the Wilcoxon’s test between the two game
levels was below the threshold (indicated above each panel)
are connected. On the left panel, the combined results for
all the recordings are presented at two significance levels,
p ≤ 0.01 and 0 ≤ 0.0001, for 6 EEG channels while the
right panel presents similar results for the two 19-channel
recordings. For the clarity of representation, on the right
panel tighter significance level thresholds p ≤ 0.0001 and
p ≤ 10−10 are used.

TABLE II
P-VALUES FOR TAPR COMPARISON BETWEEN DIFFERENT N-BACK

LEVELS (LEFT-SIDED WILCOXON RANK-SUM TEST)

Ch 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 <0.001 <0.001 <0.001 <0.001 <0.001 0.177
Fp2 <0.001 <0.001 <0.001 <0.001 <0.001 0.055
C3 <0.001 <0.001 <0.001 0.203 0.217 0.520
C4 <0.001 <0.001 <0.001 0.451 0.825 0.884
O1 <0.001 <0.001 <0.001 0.108 0.404 0.839
O2 0.048 0.001 <0.001 0.070 <0.001 <0.001

IV. DISCUSSION AND CONCLUSIONS

To shortly summarize the results of the analysis, the TAPR
measure for the frontal EEG channels Fp1 and Fp2 seems to
provide a plausible EEG indicator for mental load evaluation
and comparison. This is aligned with the earlier discussed
studies (see [14]) that evinced the theta synchronization and
alpha desynchronization with increasing mental load. The
difference is most significant and consistent between game
difficulty levels 1 and 3 or 1 and 4. The reason why the TAPR
value do not change significantly between game levels 3 and
4 might be that at level 4 the recalling the occurrence of
the target stimulus becomes too demanding and the subjects
tend to loose focus in the game.

To our knowledge, the results for the Phase Locking Value
between EEG derivations during a n-back memory game
have not been published previously. In [18] it has been
shown that in the case of Action Real-time Strategy Gaming
(ARSG) connections between the temporal and the central
area of the brain as measured using the PLV metric were
strengthened in comparison to the resting condition. Our
results confirm these finding in general. Based on Figure
2 a couple of observations can be made. Firstly, most of
the highly significant increases of the PLV occur between
channel pairs of opposite hemispheres. Secondly, two sep-
arate networks seem to be involved in the coupling: one
between the temporal and frontal areas with less significance
and another involving central, parietal and occipital regions
with high significance.

Our results may well correlate with the phenomenon
shown in [19] that the power of the delta rhythm increases
with increasing cognitive load. The increasing delta power
is suggested to indicate the inhibition of the activities not
related with the cognitive task. The author also suggests
that the delta rhythm would modulate the activity of the
networks that should be inactive during the task. Our finding
of strengthening synchronisation between the delta rhythm
of certain brain areas is complementary to the conclusion of
[19]. The modulation of other activities by the delta rhythm
need still to be shown.

However, in an attempt to obtain more consistent and
less divergent TAPR results, more recordings should be
performed in a better controlled environment. Also, other
methods for artefact removal should be studied and experi-
mented, including a visual assessment by an expert.
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Fig. 2. Significance of the difference between the Phase Locking Value, calculated over all pairs of EEG channels, between 1-back and 3-back levels of
the game.
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