
  

  

Abstract— Multiple Sclerosis (MS) is the most common cause, 

(after trauma) of neurological disability in young adults in 

Western countries. While several Magnetic Resonance Imaging 

(MRI) studies have demonstrated a strong association between 

the presence of cortical grey matter atrophy and the progression 

of neurological impairment in MS patients, the neurobiological 

substrates of cortical atrophy in MS, and in particular its 

relationship with white matter (WM) and cortical lesions, 

remain unknown. The aim of this study was to investigate the 

interplay between cortical atrophy and different types of lesions 

at Ultra-High Field (UHF) 7 T MRI, including cortical lesions 

and lesions with a susceptibility rim (a feature which 

histopathological studies have associated with impaired 

remyelination and progressive tissue destruction). We combined 

lesion characterization with a recent machine learning (ML) 

framework which includes explainability, and we were able to 

predict cortical atrophy in MS from a handful of lesion-related 

features extracted from 7 T MR imaging. This highlights not 

only the importance of UHF MRI for accurately evaluating 

intracortical and rim lesion load, but also the differential 

contributions that these types of lesions may bring to determine 

disease evolution and severity. Also, we found that a small subset 

of features [WM lesion volume (not considering rim lesions), 

patient age and WM lesion count (not considering rim lesions), 

intracortical lesion volume] carried most of the prediction 

power. Interestingly, an almost opposite pattern emerged when 

contrasting cortical with WM lesion load: WM lesion load is 

most important when it is small, whereas cortical lesion load 

behaves in the opposite way. 

Clinical Relevance— Our results suggest that disconnection 

and axonal degeneration due to WM lesions and local cortical 

demyelination are the main factors determining cortical 

thinning. These findings further elucidate the complexity of MS 

pathology across the whole brain and the need for both statistical 

and mechanistic approaches to understanding the 

etiopathogenesis of lesions.  

 

I. INTRODUCTION 

Multiple sclerosis (MS) is one of the most common causes 

of neurological disability in young adults in the Western 

world [1]. Different radiological features, such as brain 

Magnetic Resonance Imaging (MRI) “demyelinating” lesions 

and grey matter (GM) atrophy, are commonly used to 

diagnose and evaluate disease progression in MS patients [2].  
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Several MRI studies have shown that GM atrophy arises 

early in the course of the disease and accelerates with disease 

progression [3], and additional studies have also 

demonstrated a strong association between GM atrophy and 

neurological impairment in MS patients [4] evaluable through 

functional MRI [5]. As cortical atrophy seems to be the main 

driver of GM atrophy [6], the understanding of the 

neurobiological substrates and main determinants of cortical 

atrophy in MS could be instrumental in predicting disease 

progression and stratifying the disease subtypes. 

Cortical (both intracortical and leukocortical) 

demyelinated lesions constitute a substantial part of the total 

lesion load in MS brain [7]. In addition, MS patients may 

exhibit chronically active white matter lesions, which are 

identifiable on susceptibility-weighted MR images by their 

characteristic paramagnetic rim (commonly called “rim 

lesions”) [8], [9]. While both cortical and rim lesions load as 

well as cortical atrophy are relevant for the diagnosis and the 

evaluation of MS progression, very little is known about their 

interplay and, in particular, about how the differential 

occurrence of one or more types of lesion may be related to 

cortical atrophy. In this context, it is not clear whether cortical 

atrophy is mainly the result of local pathological processes or, 

instead, disconnection from other brain regions which may 

result by the disruption caused by white matter (WM) lesions. 

A strong limitation in the investigation of this question is the 

ability to actually detect and differentiate cortical and rim 

lesions (as well as of evaluating their extension) when 

employing MR scanners equipped with static fields with 

intensities typically found in clinical centers (3T or even 

1.5T) [10]. This often allows clinicians to detect and evaluate 

only a small portion of lesions. In this context, recent studies 

have demonstrated that ultra-high field (UHF) human MRI 

(7T) significantly improves in vivo imaging of both cortical 

and rim lesions in MS patients [11], [12]. UHF radiological 

findings are therefore of strong clinical relevance and may 

represent the best candidates for investigating the differential 

role of all lesion types in the progression of cortical atrophy 

in patients affected by MS.  

The aim of this study was to understand the interplay 

between cortical thickness and different types of lesions, by 

leveraging radiological markers (cortical and rim lesion load 
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MRI metrics) evaluated at UHF MRI as well as conventional 

global white matter lesion load. To this end, we combine 

lesions characterization with a recent machine learning (ML) 

framework which includes explainability, i.e. the ability to 

rank neuroradiological lesion signatures according to their 

unique contribution in predicting cortical atrophy. 

II. METHODS 

A. Patient population 

100 MS patients (74 with relapsing remitting MS and 26 

with secondary progressive MS; 24 F, 76 M; Age=43±10, 

Age at onset=33±9) were recruited at Massachusetts General 

Hospital, in Boston. Figure 2 shows inclusion criteria. The 

institutional review board approved all protocols, and a 

written informed consent was obtained from all participants. 

B. Magnetic Resonance Imaging  

2D- T2*-weighted (T2*-w) MR images (fast low-angle 
shot [FLASH], TR/TE = 1700/21.8 msec, 0.33x0.3x1 mm3 
resolution) were acquired at 7T to evaluate WM and cortical 
lesions load as well as the presence of paramagnetic rims at 
lesions’ periphery. Anatomical 3D T1-weighted MR images 
were acquired on a 3T MRI scanner (TR/TE=2530/1200 msec, 
0.9x0.9x0.9 mm3 resolution) for Freesurfer reconstruction, co-

registration with 7 T MR images [13] and regional cortical 
thickness evaluation in 150 brain regions determined by a 
predefined parcellation (Destrieux atlas [14]). Mean thickness 
in single hemispheres and in the whole brain has been 
calculated by averaging local thickness values. 

C. Lesion Identification 

Lesions were segmented with Slicer (version 4.4.0; 

http://www.slicer.org) by an expert radiologist (CAT) in 

collaboration with an expert neurologist (CM) with 

experience in cortical lesion detection. Focal cortical 

hyperintensities extending for at least 3 voxels across two 

consecutive slices on magnitude 7T images were classified as 

intracortical lesions if subpial/confined to the cortex 

(Fig.1(A)), or leukocortical if they also involved the white 

matter (Fig.1(B)). Rim lesions were segmented using Slicer 

on phase images (Fig.1(C)). A MS lesion was defined as “rim 

lesion” when a “susceptibility rim” (i.e. a hypointense 

peripheral margin) was detected and was encircling an 

isointense to extralesional center [15]. FreeSurfer and FSL 

(version 5.0; http://fsl.fmrib.ox.ac.uk) tools were used to 

quantify the lesion counts and volumes.  

D. Predictive model Development 

We designed prediction models for cortical thickness based 
on 13 demographic and lesional features (gender, patients age, 
age at onset, rim lesions presence [binary variable, rim 
lesions/no rim lesions] rim lesions load [binary variable, <4 
rim lesions/≥4 rim lesions [16]], rim lesions count and volume, 
leukortical lesions count and volume, intracortical lesions 
count and volume, rimless WM lesions count and volume) 
based on recent gradient boosting technique (Extreme 
Gradient Boosting-XGBoost). XGBoost provides a parallel 
tree boosting which has been shown to perform very well in a 
number of data science problems in a fast and accurate way 
[17]. We employed an XGBoost classifiers as follows:  

i) The original dataset was split randomly into training 
(70%) and test (30%) sets. 

ii) For each training split, a grid search was executed in a 5-
fold a cross-validation fashion for hyperparameters 

 
Figure 1. Examples of intracortical (A) and leukocortical (B) lesions on the 7T magnitude T2* images in a 40 years old female with secondary 
progressive multiple sclerosis. One of the white matter lesions from the same patient is surrounded by a peripheral paramagnetic rim that is easily 

identifiable on the 7T phase image (C) 

 

 
Figure 2 : Study inclusion criteria 

N=11 subjectes excluded for MRI motion artifacts

Participants

considered in the study

N=111

Inclusion Criteria
• Clinically defined MS diagnosis

• Aged 18-65 years old

• Stable on disease-modifying therapy/without

• treatment for ≥ 3 month prior enrolment

MRI infomation

N=100

Exclusion Criteria
• Steroid therapy ≤ 1 month 

preceding study entry

• Other neurological disorders

• Pregnancy

• MRI controindications
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optimization (Hyperparameters optimized: Step size 
shrinkage used in update to prevents overfitting; 
maximum depth of a tree; minimum sum of instance 
weight needed in a child) 

iii) After training, performance was assessed in each 
corresponding (held out) test set by calculating the 
Pearson correlation (r) as well as related p-values between 
the real and predicted values. 

iv) The above procedure was repeated 50 times, each time 
sampling the 70/30 split in a random manner. This 
allowed us to assess the confidence level of the prediction 
metrics evaluated on the test sets. 
 

Also, for each repetition of the 70/30 split, the unique 
contribution of each feature to the final prediction performance 
of the model was evaluated by computing the Shapley 
Additive explanations (SHAP) values, derived from 
coalitional game theory [18]. Shap values were derived both 
for single features as a function of the feature value itself (i.e. 
for each patient), and as a global average across patients. Both 
of these metrics were averaged across the 50 repetitions.  All 
predictive regression analyses were implemented in Python 
3.6 using the scikit-learn python module [19]. 

III. RESULTS 

Table I shows model performances in the prediction of the 
mean cortical thickness in the right and left hemispheres as 
well as in the whole brain. The prediction performance was 
satisfactory (average p<0.02 and average Pearson r>0.4 
evaluated in 30%-sized test across 50 repetitions) in all 
experiments, confirming a strong relationship between 
lesional features and cortical atrophy.  

Figure 3, depicts an exemplar relationship between real and 
predicted values cortical thickness averaged across the whole 
brain (extracted from one single test set). 

Figure 4(A-C) shows the resulting SHAP feature importance 
raking derived from XGBoost model when predicting average 
thickness in the right-left hemispheres (Fig.4(A-B)), and in the 
whole brain (Fig.4(C)). These plots list the most significant 
features in thickness prediction, in descending order. The top 
variables contribute more to the model than the bottom ones 
and thus have highest predictive power. The four most 
important features for the predictions in each hemisphere and 
in the whole brain were, in order, WM lesion volume (not 
considering rim lesions), patient age and WM lesion count (not 
considering rim lesions), intracortical lesion volume. 

Finally, Fig. 5 shows partial SHAP dependence plots (median 
and confidence intervals across repetitions) of the features 
which displayed the highest rank in terms of contribution to 
the prediction of globally averaged cortical thickness (Fig. 
3(C)). Several insights can be drawn from these plots. For 

example, the smaller the WM lesions volumes and counts, the 
higher their importance in predicting mean thickness values, 
pointing to an almost binary, absence/presence effect. On the 
other hand, an increase of intracortical lesion volume 
corresponds to an increase in its importance in predicting 
atrophy. AS expected, a similar effect is observed with Age. 

 

 

IV. DISCUSSION AND CONCLUSION 

Through an interpretable machine learning approach, we 
were able to predict cortical thickness in MS from a handful of 
lesion-related features extracted from ultra-high field imaging 
(7 T), highlighting not only the importance of UHF MRI for 

 
Figure 3. Example of correlation (in one single test set) 

between real and predicted whole brain cortical atrophy 
values (r=0.51, p=0,007). 

 

 

 
Figure 4. Mean feature importances across 50 repetitions for thickness 
prediction in the two hemispheres (A,B) and in the whole brain (C) 

 

TABLE I. Models performances 
Mean Thickness r-value p-value 

Right Hemisphere 0.47 (0.15) 0.009 (0.0013) 

Left Hemisphere 0.44 (0.18) 0.016 (0.020) 

Whole Brain 0.48 (0.17) 0.008 (0.011) 

Mean (across 50 repetitions) Pearson correlation (r) as well as related p-values between the 
real and predicted values evaluated in a 70.30 test/train split. Standard deviations across 50 
repetitions are shown in brackets. 
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accurately evaluating intracortical and rim lesion load [12], 
[20], but also the differential contributions that these type of 
lesions may bring to determining disease evolution and 
severity. We found that a small subset of features [WM lesion 
volume (not considering rim lesions), patient age and WM 
lesion count (not considering rim lesions), intracortical lesion 
volume] carried most of the prediction power.  

The fact that both WM lesions and intracortical lesions 
were included in those top ranking predictors points to a 
complex interplay of local pathology and distant disconnection 
which should be elucidated in targeted studies evaluating e.g. 
the lesional distance and geometry with respect to the 
reconstruction of the cortical mantle. However, on the bases of 
our results we can speculate that disconnection and retrograde 
Wallerian (e.g. axonal) degeneration due to WM lesions and 
local cortical demyelination seem to be the main factors 
determining cortical thinning. Interestingly, rim lesions per se 
are not associated with cortical thinning, meaning that any type 
of WM lesions could determine disconnection. Locally, 
neurodegeneration is probably not related to local cortical-
cortical disconnection but possibly to a progressive 
accumulation of pathology. 

We also assessed the individual unique contributions of 
each lesional feature to our predictions. Interestingly, an 
almost opposite pattern emerged when contrasting cortical 
with WM lesion load: WM lesion load is most important when 
it is small, whereas cortical lesion load behaves in the opposite 
way. This finding further elucidates the complexity of MS 
pathology across the whole brain and the need for both 
statistical and mechanistic approaches to understanding the 
etiopathogenesis of lesions. In the future deep learning 
techniques tailored to neurodegenerative disorders [21] might 
prove useful to complement our ML approach.  
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Figure 5. SHAP dependence plots of the four most important features 

in the prediction of globally averaged mean thickness (in order of 
importance: WM lesions volume, not considering rim lesions; patient 

age; WM lesions counts, not considering rim lesions and intracortical 

lesions volume. 
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