
  

 

Abstract— Recently, mobile and wearable devices have 

become an increasingly integral part of our lives. They provide 

a possibility of detailed health monitoring using noninvasive and 

user-friendly techniques. However, lack of continuous 

monitoring, the need of specific sensors, and the limitations in 

memory and power consumption are only some of the potential 

drawbacks of such devices. In the current paper a system based 

on a deep recurrent neural network is developed for an 

automatic continuous monitoring of sleep-related physiological 

parameters by means of a wearable biosignal monitoring 

systems. Smartwatches based algorithm for non-invasive 

monitoring of sleep stages, respiratory events (including sleep 

apnea and hypopnea), snore and blood oxygen saturation is 

developed. Our experimental results demonstrate that proposed 

model constitutes a noninvasive and inexpensive screening 

system for sleep-related physiological parameters and 

pathological states. The model has shown a 77 % accuracy in 

sleep stages prediction, more than 80 % accuracy in epoch-by-

epoch respiratory events classification, above 60 % accuracy in 

snore events classification and above 70 % accuracy in blood 

oxygen saturation (SpO2) level classification (for a two class 

problem with a SpO2 threshold of 95 %). 

 

I. INTRODUCTION 

Wearable biomedical sensors and the field of healthcare 
monitoring systems quickly develop in recent years. Leading 
high-tech companies increase investments in biomedical 
research and development every year. Smart belts, rings, 
watches, and earphones - it is only a part of the examples of 
consumer electronics available on the market with user health 
monitoring features. However, there are still several 
limitations that restrain the development of such devices. 
These include the limited complexity of sensors, as measuring 
physiological parameters requires that certain sensors be 
embedded into the device along with the appropriate 
methodology be satisfied. Moreover, the accuracy of 
healthcare analysis of such devices is frequently quite low and 
sufficiently suffer from particular measurement conditions. 
Memory limitations and battery life should also be taken into 
account. Despite the mentioned issues, wearable biomedical 
systems continue to develop steadily, expanding the 
possibilities of their use both in terms of a device for screening 
pathological conditions, and more accurate medical systems 
[1-3]. 

It is known, that there are an obvious direct and indirect 
correlation between different physiological parameters of a 
body, for example between heart rate and breathing cycle, 
heart rate variability (HRV) and systolic and diastolic blood 
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pressure values and their trends, respiration rate and HRV and 
different types of breathing disorders, like sleep apnea-
hypopnea syndrome, snore, acute respiratory distress 
syndrome, etc. Consequently, by using appropriate algorithms 
and approaches it is possible to estimate (with sufficient 
accuracy or as a screening) a number of related physiological 
characteristics for further in-depth analysis or continuous 
monitoring [4-6]. 

In terms of mobile and wearable devices, extracted 
physiological data (for example, using the most popular HRV 
and activity information which can be simply measured by 
standard accelerometers, gyroscopes or plethysmography 
(PPG) sensors available almost in all wearable and mobile 
devices) can be effectively used to estimate a number of related 
vital signs and pathological states (such as blood oxygen 
saturation, sleep apnea and hypopnea, snore, blood pressure, 
etc.) by applying specialized algorithms [3, 7-9]. Recently, 
deep-learning based models have shown promising results in 
the field of biomedical engineering, in particular for the 
analysis of sensors data, recognition of specific medical 
patterns, identification of hidden models, and decision-making 
in the field of healthcare. In particular, a recurrent neural 
networks (RNN), including gated recurrent units (GRU) and 
long short term memory (LSTM) neural networks (NN), are 
appropriate tool for sensors data analysis. Several recent 
studies have shown the potential of their use for physiological 
data processing (including ECG and PPG), sleep quality 
analysis, etc. [10-13]. 

This paper proposes a method for automatic continuous 
monitoring of multiple sleep-related physiological parameters. 
The idea is implemented based on the analysis of the 
physiological state of a person during sleep by means of 
wearable devices (smartwatches), including sleep stages and 
sleep apnea analysis, blood oxygen saturation level and snore 
episodes’ estimation, and respiration pattern reconstruction. 
The deep learning framework is developed which is based on 
the LSTM NN with an adaptive output layer for the sleep-
related physiological parameters estimation. 

II. METHODOLOGY 

A. General Concept 

There are three main blocks in the general flowchart of the 
proposed system: raw sensor data gathering and processing, 
physiological data assessment algorithms, and measuring of 
sleep-related physiological parameters.  

In such a system, the physiological data extraction and the 
sleep-related physiological parameters estimation can be 
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performed using subject specific and vital sign specific 
algorithms, which can be, but are not limited to, deep NN, 
convolutional NN, and RNN. In the current paper, recurrent 
neural networks were used. In the current paper, RNN were 
used. In this case, RNN's are the most suitable due to the 
possibility of time sequence processing and hidden states 
analysis [10-15].  

B. Statement of the problem 

The main purpose of the current paper is to develop a 
portable user friendly system for detailed analysis of 
physiological state during sleep, including sleep stages, 
respiratory events (including sleep apnea and hypopnea), 
snoring and blood oxygen saturation. 

It should be noted, that the gold standard for the analysis 
of physiological state during sleep is a polysomnography 
(PSG) [1, 14], which is usually carried out in the special 
medical center under the supervision of a qualified technician 
and typically includes a dozens of different sensors which are 
attached to a body and thus extremely inconvenient (ECG, 
EEG, EMG, etc.). 

As a basis of our current system the algorithms developed 
in our previous papers for sleep stages analysis, respiratory 
events classification and smart alarm, were used [3, 7-9, 15].  

C. Neural Network for sleep-related parameters estimation 

NN architecture for the sleep stages (SS) classification, 
respiration events (RE) pattern reconstruction, blood oxygen 
saturation estimation and snore events screening represents a 
combination of fully connected and recurrent layers. 
Particularly, it consists of a bidirectional LSTM NN (two 
parallel Bi-LSTM blocks are used) and multiple outputs in the 
last fully-connected classification layer, which are adjusted to 
the estimation of each particular sleep-related physiological 
parameter. 

D. Dataset information 

We use the same dataset as in our recent studies [3, 7-9, 
15]. The full dataset consists of 263 logs from 176 different 
users and was prepared by Samsung Medical Center. The 
participant’s average age is 39.6 years, BMI index is 23.99 
and apnea-hypopnea index (AHI) is 12.69 events/h. The raw 
data includes full nocturnal PSG along with the green light 
PPG and 3-axic accelerometer signals from wrist, which were 
gathered from the Samsung Galaxy Watch at a 20Hz sampling 
rate. The PSGs data were labeled by a certified technician 
according to the AASM 2015 guidelines [16]. The dataset was 
divided into the first part for training and validation of 194 
nights of 107 different participants and to the second part for 
testing of 69 nights of 69 different participants. In addition, in 
total 7 logs were eliminated at the pre-processing step due to 
the absence of signals or annotations. 

III. RESULTS AND DISCUSSION 

A. Sleep stages classification 

Table I presents classification results for multiclass sleep 
stages classification problem for each 1-minute interval using 
LSTM based NN and adjusted FC output layer [15]. The 
classification is performed into the four stages: deep, light, 
wake and rapid eye movement. The performance 
characteristics include weighted precision, recall and F1 score 

for each sleep stage. The average achieved accuracy is 79 %, 
while the Cohen’s Kappa coefficient is 0.62, which 
corresponds to a substantial agreement between the true labels 
and the NN predictions. In general, for all sleep stages all 
classification metrics shows values greater than 0.5, which 
indicates a good balance of the classifier predictions. The 
highest performance is achieved for the Light and REM sleep 
stages, while the classification of the Deep sleep stages is 
slightly lower. 

TABLE I.  CLASSIFICATION RESULTS FOR THE SLEEP STAGES SUBTASK 

 

B. Respiratory pattern 

A detailed analysis of the sleep-related RE, and, in 
particular, sleep-related respiratory pattern reconstruction, is 
a key aspect of sleep medicine and sleep quality scoring. 

The averaged achieved accuracy for the epoch-by-epoch 
RE classification is 82%, Cohen’s Kappa agreement is 0.44 
(which corresponds to moderate agreement), and the F1 score 
is 82 %, which reflects a substantial balance between RE and 
No RE epochs classification [9]. 

Fig. 1 and Table II show the confusion matrix for the 1-
minute epoch’s classification as well as the precision, recall 
and F1 score for each class. The model correctly classifies 
84% of epoch’s without RE and 70 % of epoch’s with RE 
(sensitivity of the model or a recall). The resulting precision 
(positive predictive value) of classification of epoch’s without 
RE is 0.94, and for epoch’s with RE is 0.45. 

 

Figure 1. Confusion matrix for epoch-by-epoch respiratory pattern 
classification. 

TABLE II.  PERFORMANCE METRICS OF EPOCH-BY-EPOCH 

RESPIRATORY PATTERN CLASSIFICATION 

 Precision Recall F1 score 

No RE  0.94 0.84 0.89 

RE  0.45 0.7 0.55 

 

C. AHI prediction 

Using the predictions of respiratory events by each epoch 
of the sleep episode, an estimation of AHI can be carried out. 

 Deep Light Wake REM 

F1-score 0.59 0.85 0.60 0.77 

Precision 0.53 0.83 0.67 0.81 

Recall 0.56 0.84 0.63 0.79 
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Unlike the actual AHI value, the predicted AHI value contains 
a methodological error, since we do not take into account the 
number of RE during each hour of sleep, as is necessary in the 
accordance with the classical methodology, but we count the 
total number of minutes with all types of RE. Therefore, this 
value should be considered as a screening tool for identifying 
the patients at risk for whom the predicted AHI value, 
calculated according to the proposed methodology, should be 
also greater than a certain threshold value.  

Fig. 2 shows the correlation between actual and predicted 
AHI values, mean absolute error (MAE) and mean squared 
error (MSE) for predicted AHI for different apnea severity 
ranges. The correlation coefficients between AHI measured 
by PSG and AHI measured by proposed model are 0.74 
(Spearman correlation coefficient) and 0.91 (Pearson 
correlation coefficient). As can be seen, 95 % of participants 
in the test set were either correctly classified or misclassified 
in the immediate neighbor class (basically, the model makes 
mistakes only by one severity level) in terms of apnea severity 
class.  The main contribution in the AHI estimation error is 
caused by the underestimated group of 5 participants with 
high AHI values measured by PSG. 

For a two class problem (as a screening tool for sleep-
related respiratory events) with a threshold of 15 events/h the 
proposed model shows an accuracy of 91%. That is, the model 
provides high efficiency for the correct classification of 
participants belonging to the low apnea risk group (including 
“no apnea” and “mild apnea” classes) and high apnea risk 
group (including “moderate apnea” and “severe apnea” 
classes), see Fig. 3.  

 

Figure 2. Actual AHI (y-axis) versus predicted AHI (x-axis) (dashed line 
is the identity line and dash-dotted lines are the apnea severity thresholds). 

 
Figure 3. Confusion matrix of the apnea severity prediction: as a 

screening tool for two severity levels with a threshold of 15 events/h.  

D. Blood oxygen saturation level estimation 

It would be reasonable to clarify that if our model shows 
high efficiency in detecting RE epochs during which the level 
of blood oxygen saturation normally decreases (it is generally 
known, that during various types of sleep related respiratory 
events, the level of blood oxygen saturation drops below 
normal values of 95% and can even achieve critical values 
below 80%), how well can we evaluate the dynamics of blood 
oxygen saturation? 

Fig. 4 represents the blood oxygen saturation level at 
different values of the predicted probability (by the proposed 
NN) of belonging to the class “RE epoch” / “no RE epoch”. 
The box and whisker plots show interquartile range, namely 
the minimum, first quartile, median, third quartile, and 
maximum. A vertical line is the median. Outliers are omitted. 
Probabilities exceeding 0.5 refer to the “No RE epoch”, and 
less than 0.5 – “RE epoch”. That is, the higher the probability 
value, the model is more confident that the given epoch does 
not contain RE. The lower the probability value, the model is 
more confident that the given epoch contains RE. With a 
decrease in probability from 1 to zero, the level of blood 
oxygen saturation also decreases, and with probabilities less 
than 0.5, the median of the oxygen saturation values becomes 
below 95%. With probability values in the range from 0 to 0.1, 
the median of the blood oxygen saturation values decreases to 
93%, and the range of values is from 83–100%. 

The branch of the proposed model, which is responsible for 
the blood oxygen saturation level estimation (SpO2), gives the 
following results. All 1 minute epochs were considered as 
epochs with normal SpO2 (higher or equal to 95 %) and low 
SpO2 (lower than 95 %). The accuracy on the test set for the 
epoch-by-epoch prediction for such model is 79%, the 
Cohen’s Kappa agreement is 0.29 (which corresponds to the 
fair agreement). The precision, recall and F1 score are 
summarized in the Table III.  The average weighted F1 score 
is 0.77, reflecting a substantial balance between the “normal” 
and “low” SpO2 classes (see Fig. 5 for the details between 
actual classes distribution). 

In general, the model shows good agreement with the SpO2 
values measured by PSG. The trend of SpO2 changes can be 
also estimated with sufficient precision.  

 

Figure 4. Blood oxygen saturation level versus probability of “RE”/ “no 

RE” epoch predicted by the proposed model.  
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TABLE III.  PERFORMANCE METRICS OF EPOCH-BY-EPOCH BLOOD 

OXYGEN SATURATION LEVEL CLASSIFICATION 

 Precision Recall F1 score 

Normal SpO2 0.82 0.92 0.87 

Low SpO2  0.55 0.33 0.41 

 

 
Figure 5. Confusion matrix of the blood oxygen saturation level 

prediction.  

E. Screening of snoring events 

Finally, let us analyze the ability of the model under 
consideration to distinguish the presence of snoring events 
during sleep. A 1-minute epoch is labeled as containing a 
snoring event if it contains at least 10 seconds of snoring. 

The accuracy for the epoch-by-epoch snore events 
classification is 75%, Cohen’s Kappa agreement is 0.25 
(which corresponds to the fair agreement). The precision, 
recall and F1 score are summarized in the Table IV.  The 
average weighted F1 score is 0.75 which also reflects a 
substantial agreement in classification of epochs containing 
snoring events (see Fig. 6 for details of the actual distribution 
of classes). Thus, the proposed model can be considered as a 
potential screening tool for snoring events classification. 

TABLE IV.  PERFORMANCE METRICS OF EPOCH-BY-EPOCH SNORE EVENTS 

CLASSIFICATION 

 Precision Recall F1 score 

No Snore 0.84 0.84 0.84 

Snore  0.41 0.4 0.41 

 

 
Figure 6. Confusion matrix of the snoring events classification.  

IV. CONCLUSION 

This research provides the deep neural network based 
algorithm for estimation, screening and/or continuous 
monitoring of multiple sleep-related physiological 

parameters. The hidden states, trends and correlations 
between the measured sleep-related physiological parameters 
are evaluated by means of time sequence sensors data 
processing using RNN. The proposed novel approach 
provides substantial agreement with the measured 
physiological parameters using PSG. It shows comparable to 
the human expert’s results, as well as improved performance 
compared to the state-of-the-art solutions for sleep stages and 
respiratory events classification. At the same time, the 
assessment of AHI and SpO2 level, as well as snoring pattern 
reconstruction can also be done with substantial precision, 
which is suitable for screening pathological conditions.  
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