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Abstract — Skull-base chordoma (SBC) is a rare tumour 

whose molecular and radiological characteristics are still being 

investigated. In neuro-oncology microstructural imaging 

techniques, like diffusion-weighted MRI (DW-MRI), have been 

widely investigated, with the apparent diffusion coefficient 

(ADC) being one of the most used DW-MRI parameters due to 

its ease of acquisition and computation. ADC is a potential 

biomarker without a clear link to microstructure. The aim of this 

work was to derive microstructural information from 

conventional ADC, showing its potential for the characterisation 

of skull-base chordomas. Sixteen patients affected by SBC, who 

underwent conventional DW-MRI were retrospectively selected. 

From mono-exponential fits of DW-MRI, ADC maps were 

estimated using different sets of b-values. DW-MRI signals were 

simulated from synthetic substrates , which mimic the cellular 

packing of a tumour tissue with well-defined microstructural 

features. Starting from a published method, an error-driven 

procedure was evaluated to improve the estimates of 

microstructural parameters obtained through the simulated 

signals. A quantitative description of the tumour microstructure 

was then obtained from the DW-MRI images. This allowed 

successfully differentiating patients according to histologically-

verified cell proliferation information. 

 
Clinical Relevance — The impact on cancer management 

derives from the expected improvement of radiation treatment 

quality tailored to a patient-specific non-invasive description of 

tumour microstructure. 

I. INTRODUCTION 

The treatment of rare, slow-growing and aggressive 

tumours, like skull-base chordoma (SBC), benefits from 

particle therapy which exploits carbon ions or protons instead 

of X-rays, as in conventional radiotherapy [1]. However, a 

full molecular and radiological characterisation of SBC is not 

yet available, preventing an optimal treatment definition. For 

these reasons, a deeper understanding of microstructural 

features would positively contribute to the current SBC 

characterisation, enabling treatment personalisation [2–9]. 

Diffusion-weighted magnetic resonance imaging (DW-

MRI) is showing promising perspectives in radiotherapy 

applications, spanning from tumour characterisation to 

treatment personalisation [2–10]. DW-MRI is indeed suitable 

for indirectly characterising tissues at a microscopic scale 

(microstructure) through biophysical models or signal 
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representations. Among these, we find simple mono-

exponential models (e.g. conventional DW-MRI described by 

the ADC, Apparent Diffusion Coefficient, or diffusion tensor 

imaging, DTI), as well as more complex models such as 

multi-compartmental [11–13], and others [14], that provide 

information on diffusivity, vascularity, density, or cell size. 

The richer description, however, requires challenging and 

longer acquisition protocols, which are often not feasible 

within radiotherapy imaging, that mostly encodes coarser and 

non-specific microstructural information through 

conventional ADC. Recently, a computational approach [15] 

has been proposed to overcome the limitations of simplistic 

DW-MRI acquisitions, conventionally employed in 

radiotherapy imaging. Using Monte Carlo simulations of 

particles diffusion in virtual tumour-like environments, the 

approach estimates indices of microstructural features such as 

cell size and density, and water apparent diffusivity from 

conventional ADC data.  

The aim of this study was, therefore, to evaluate the 

framework to derive improved microstructural information 

from conventional DW-MRI [15] and characterise SBC 

treated with particle therapy. 

II. METHODS 

A. DW-MRI acquisition 

Sixteen patients affected by SBC, who underwent DW-
MRI (b-values=50,400,1000 smm-2, averaged 3 orthogonal 
directions, Magnetom Verio – Siemens, Erlangen) before 
treatment and who were enrolled for particle therapy at the 
National Center of Oncological Hadrontherapy (CNAO), were 
retrospectively selected. The study was approved by the local 
Research Ethics Board. From mono-exponential fits of DW-
MRI, ADC maps were estimated using b=50,1000, 
b=400,1000 and b=50,400,1000 smm-2. Gross target volume 
(GTV) contours and histological information (proliferation 
index Ki-67) were collected.  

B. Numerical DW-MRI simulations 

Following the approach described in [15], DW-MRI 
signals (N=3928) were simulated using Monte Carlo 
simulations [16], and the same acquisition parameters used in 
the SBC cohort, with ADCs computed using b=50,1000, 
b=400,1000 and b=50,400,1000 smm-2. Signals were 
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simulated from synthetic substrates that mimic the cellular 
packing of tumour tissues as aggregated ellipsoids with well-
defined density and geometrical properties (range: cells’ 
radius (R) 2.5-10.0 µm; volume fraction (vf) 0.3-0.6; 

diffusivity (D) 0.5-3.0 m2/ms).  

C. From ADC to microstructure 

As in [15], after partitioning the simulated ADCs, input 
data were modelled as a weighted sum of the partitions’ 
centroid, where each weight W quantifies the contribution of 
a cluster to the overall estimate. These weights were 
determined through an optimisation procedure and then used 
to estimate the microstructural parameters (R, vf, D) of the 
input data.  

D. Improving the estimates of microstructural parameters 

An error-driven procedure was evaluated to improve the 
estimates of microstructural parameters. The absolute 
estimation error of the microstructural parameters (difference 
between true and estimated value) was computed for the 
simulated data, whose true values were known. In particular, 
the procedure involved: (i) calculating the absolute estimation 
errors, comparing true values and initial parameters estimates, 
for the simulated data; (ii) initially estimating microstructural 
parameters for input data; (iii) considering a set of n first-
neighbour simulations close (in terms of ADCs and set of 
weights: dist(ADC,W)) to the input data to calculate the mean 
value of the absolute errors; (iv) adding this average error to 
the initial estimates. 

E. Accuracy analyses and application to SBC patients’ data 

The accuracy of the method, with or without error 

correction, was assessed in terms of root mean square error 

(RMSE) on a random sample of the simulations (training-set 

80%, test-set 20%). Then, the ranges of the estimated 

microstructural parameters in the two cases were compared 

with that of the true values, known by design.  

Accuracy was also exploited for sensitivity analyses, 

aiming at defining the optimal free parameters of the 

correction procedure, i.e., the number n of closest simulations, 

the dimension of the training set and the type of distance to be 

used to calculate the corrective error. The standard deviation 

(SD) of the parameters from n close simulations was 

computed to evaluate the behaviour of the introduced local 

error correction procedure. 

Finally, the model was applied voxel-wise to patients' 

GTVs to produce quantitative maps of R, vf and D. 

Histogram-based metrics (mean, median, interquartile range, 

entropy) were compared between patients with high (Ki-

67≥5%) or low (Ki-67<5%) proliferation through statistical 

tests (Mann-Whitney U-test, α=0.05).  

III. RESULTS 

The RMSE calculated on the test-set, separately for each 
parameter, showed that accuracy improves after the correction 
procedure (Fig. 1). The improvement in performance was also 
confirmed by the estimated parameters’ ranges, that better 
followed the ranges of true values after the error correction 
procedure (Fig. 2), with stark improvements for R and vf.  

Sensitivity analyses for the definition of free parameters 
showed that the best result, across all microstructural 

parameters, was obtained with n=4 close simulations (Fig. 3) 
and a distance that considered both ADCs and the set of 
weights (Fig. 4).  

The parameters’ SD of the n=4 simulations used for the 
correction reached high values (up to 3.44 μm, 0.15 and 0.54 
μm2/ms, for R, vf and D, respectively),  

From the voxel-wise maps obtained by applying the model 
(Fig. 5) to the patients' GTV and from the analysis of the 
histogram metrics, significant statistical differences were 
found for entropy values (statistically significant for R 
(p=0.021), vf (p=0.021) and D (p=0.035), but not for the 
measured ADC (p=0.106)), with GTVs characterised by high 
cell proliferation being described by high entropy (Fig. 6).  

Figure 1.  Comparison of RMSE obtained for simulations before 

(blue) and after (red) the correction procedure employing the absolute 

estimation error. The dashed red lines indicate the resolution at which 
parameters were defined (2.5 μm for R, 0.1 for vf and 0.5 for D). 

 

 

 

Figure 2.  Ranges of microstructural parameters estimates for R, vf 
and D. For each parameter, the range of true values (bottom row), 

estimated values before (middle row) and after error correction (top 

row) are shown. 
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Figure 3.  RMSE performance as the number of closest simulations 

(n) used to correct the parameters’ estimate increases from 1 to 8. 

 
 

 

 
Figure 4.  RMSE for R, vf and D as a function of the size of the 

training set (expressed in terms of % of the total available 

simulations) used for estimating the corrective error, comparing the 
case when the correction uses a distance that depends on ADC and 

the set of weights (dist(ADC,W), solid blue) or only on ADC 

coordinates (dist(ADC), dashed red). The values at 0% refer to the 
RMSE obtained without correction. 

 

 
Figure 5.  ADC-derived microstructural maps in an example patient 

before (left) and after (right) estimation error correction. After 
correction, a higher spatial heterogeneity is visible. 

 

 

 
Figure 6.  Examples of microstructural maps from two patients 
characterised by low (Ki-67<5%, left) or high (Ki-67≥ 5%, right) cell 

proliferation indices. 
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IV. DISCUSSION AND CONCLUSION 

In this work, microstructural features were inferred from 
ADC data, using a previously published computational 
approach [15] to characterise the ADC-microstructure 
relationship in terms of predefined tissue features (R, vf, D). 
In this work, a new procedure to reduce the estimation error 
was proposed within the framework from [15] and a 
quantitative description of the tumour microstructure in terms 
of R, vf and D, was obtained from  conventional DWI widely 
available in clinical settings, instead of complex models (e.g. 
VERDICT [13]) which require richer MRI acquisitions often 
not compatible with standard clinical protocols. 
By applying the proposed correction to simulation data, the 
RMSE on the estimates dropped below the resolution at which 
parameters were defined (2.5 μm for R, 0.1 for vf and 0.5 for 
D), whereas errors from the original method in [15] yielded 
higher values. Such correction also allowed restoring the full 
range of the microstructural parameters. The importance of the 
training dataset was highlighted by the sensitivity analyses 
conducted for dist(ADC,W), that showed decreasing errors 
when increasing the size of the training-set [17]. Also, the 
estimation error decreased when considering n=4 closest 
simulations. The high values of the parameters’ SD of the n=4 
simulations confirmed the non-specific association of the 
ADC to the underlying microstructure, for which similar 
ADCs can point to very different microstructure 
configurations. This also suggested that the proposed 
correction procedure did not introduce a systematic bias: the 
n=4 simulations involved in the correction did not force the 
estimate on which they acted to assume a consistently different 
value but, rather, they corrected the estimate by compensating 
it with the average error that the model commits in that region. 

Although further validation (in histopathological, clinical, 
and technical terms) of the method is needed, this work 
quantified the error associated to the estimation of 
microstructural parameters derived by the simulation 
framework in [15] and proposed a novel procedure with which 
the estimation error can be reduced.  

The potential clinical value of the method was shown in 
the context of SBC, as patients with high or low cell 
proliferation were successfully discriminated using R, vf and 
D, in contrast to conventional ADC. The quantitative maps of 
microstructural parameters derived after error correction 
showed also higher spatial variability with respect to ADC, 
pointing towards a potentially improved detection of 
microstructure heterogeneity. Future studies will be performed 
on a wider patient cohort, to validate the current findings. 

In conclusion, the adopted framework allowed deriving 
accurate microstructural parameters and can be easily 
translated on conventional ADC data widely available in 
clinical radiotherapy settings. Furthermore, the application on 
SBC tumour showed its potential to non-invasively 
characterize the proliferative capacity in SBC and contribute 
to treatment personalisation in particle therapy. 
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