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Abstract— Orofacial kinematics are valuable markers of 

function and progression in a variety of neurological disorders. 

Recent advances in facial landmark detection have been used to 

improve landmark tracking in video, for example by accounting 

for interframe optical flow. It has been demonstrated that 

finetuning (a type of transfer learning) can improve the 

performance of some facial landmark detection systems. Here, 

we asked whether a neural network model that is pretrained 

using video data (supervision by registration, SBR) can be 

finetuned to improve landmark detection and tracking, using 

data from the Toronto Neuroface Dataset (n=36), which 

comprises 3 different clinical populations. We finetuned the 

supervision by registration (SBR) model using data from 3 

individuals from each of 3 clinical populations (n=9), with or 

without neurological impairments. The remaining individuals 

from our dataset (n=27) were used for evaluation. Finetuning 

SBR moderately improved the model’s accuracy but 

substantially increased the smoothness of tracked landmarks. 

This suggests that finetuning on video-trained models, like SBR, 

could improve the estimation of orofacial kinematics in 

individuals with neurological impairments. This could be used to 

improve the detection and characterization of neurological 

diseases using video data.  

Clinical Relevance— This work demonstrated that transfer 

learning applied to video-trained facial landmark detectors 

could improve the measurement of orofacial kinematics in 

individuals with neurological impairments. 

I. INTRODUCTION 

Orofacial kinematics provide an important window into the 

state of muscle function in neurological diseases like 

amyotrophic lateral sclerosis (ALS), Parkinson’s disease, 

Bell’s Palsy, or stroke [1], [2] and are used for diagnostic 

purposes, patient stratification, and disease tracking and 

prediction. Lab-based objective instrumental assessment 

techniques used for kinematic assessments employ reflective 

markers or sensor coils to track facial landmarks [3], [4]. 

While precise, these systems are complex and expensive, 

which has limited their clinical adoption. 

 Computer vision and deep learning have made it possible 

to quantify orofacial movements from video without complex 

hardware; however, presently, these systems have some 

substantial limitations related to video-based facial landmark 

tracking in clinical populations. Two of these problems are 

landmark jitter and algorithmic bias. Landmark jitter is 

unwanted noise in the time series of facial landmark positions 
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arising from random error of landmark estimation, as opposed 

to true physiological movement. Recent work has sought to 

correct this by developing models that are trained using 

videos [5]; however, these techniques have not been applied 

to clinical data previously to the best of our knowledge. 

Smoother landmark tracking would require less filtering, 

which can adversely impact the estimation of kinematics [6], 

and could improve the measurement of articulatory 

acceleration and jerk, which can provide an advantage in 

distinguishing healthy individuals from those with a disease 

[7].  

Algorithmic bias is the observation that computer vision 

facial landmark detectors have less precision when 

identifying facial landmarks in populations on which these 

models have not been trained, specifically older individuals 

or those with neurological impairments. Previous work has 

identified that various facial landmark detection systems have 

significantly higher error on individuals with neurological 

disorders, compared to healthy older individuals [8]. 

Finetuning (a type of transfer learning) has been explored as 

a means to reduce the extent of this bias [8], [9].  

Facial landmark tracking using deep neural networks can 

be done accurately using popular models such as the facial 

alignment network (FAN) [10]. More recently, models such 

as supervision-by-registration (SBR) have been developed 

that incorporate video-based training signals such as optical 

flow [5], which may improve smoothness in landmark 

tracking in video. Previous work has demonstrated that 

finetuning using relevant clinical data can dramatically 

improve FAN accuracy [9]; to our knowledge, the impact of 

finetuning on accuracy and smoothness using SBR has not 

been evaluated, nor how it compares to finetuning a non-

video optimized (i.e., FAN) model.  

In the present study, we finetuned SBR using data from 

individuals from clinical populations and compared its 

accuracy and smoothness of tracking to FAN and its finetuned 

version. This builds upon a previous analysis of the SBR 

algorithm’s tracking performance [11]. We hypothesized that 

finetuning SBR would lead to improvements in video facial 

landmark tracking compared to both 1) the non-finetuned 

SBR model, and 2) a finetuned facial landmark detector [9] 

that is not optimized for video-based landmark tracking. 
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II. METHODS 

A. Participants and clinical assessment 

Individuals diagnosed with amyotrophic lateral sclerosis 

(ALS) (n=11, median age=62), individuals who had strokes 

(n=14, median age=64), and healthy older adults (n=11, 

median age=65) were recruited as part of the Toronto 

Neuroface Dataset, which has been described in detail 

previously [12]. See Table I for a brief summary of this 

dataset. The dataset was split into two parts: a finetuning set, 

and an evaluation set. The finetuning set was used here to 

finetune the pretrained SBR model (see below), and consisted 

of 9 individuals – 3 from each group – with the highest facial 

asymmetry from each group (as judged from the combined 

ratings of 2 speech-language pathologists [SLPs]). The 

remaining 27 individuals were used for evaluation of all 

models in the present study, so that data would be consistent 

across models. The study was approved by the Research 

Ethics Boards at the Sunnybrook Research Institute and 

University Health Network: Toronto Rehabilitation Institute.  

TABLE I.  BRIEF DEMOGRAPHIC SUMMARY 

 Set ALS Stroke Control 

N (FT, E) 3, 8 3, 11 3, 8 

Age* 

FT [45, 55, 57] [21, 62, 64] [63, 65, 76] 

E 63 [58-75] 67 [60-89] 
64.5 [33-

78] 

Sex 

(num. 

female) 

FT 2/3 0/3 0/3 

E 5/8 4/11 4/8 

Disease 

duration

*, ** 

FT 34 [22-109] 125 [3-3262] - 

E [28, 41, 99] [17, 49, NA] - 

ALSFRS
-R* 

FT 36.5 [26-40] - - 

E [26, 35, 39] - - 

FT = ‘finetuning’ dataset, E = ‘Evaluation’ dataset. *presented as median [min-max] for the E set, 

and as raw values for the FT set. **Disease duration is since resolution of symptoms in stroke (days), 

or since reported symptom onset in ALS (months). ALSFRS-R = ALS Functional Rating Scale – 

Revised. NA = not available. 

B. Recording and tasks 

Videos of participants performing oromotor tasks were 

recorded in a controlled laboratory setting using an Intel 

RealSense SR300 camera mounted on a tripod and placed 30-

60 cm from the participants, who were seated. Frontal lighting 

was provided to illuminate participants’ faces. Participants 

completed 3 oromotor tasks that we used to derive estimates 

of landmark tracking during steady-state (REST), vertical 

lower lip movement (OPEN), and horizontal mouth corner 

movement (SPREAD), respectively. During REST, 

participants had to be still and look straight ahead into the 

camera. OPEN involved participants maximally lowering 

their jaw, while looking straight ahead at the camera. Finally, 

during SPREAD participants had to spread the corners of their 

mouth as wide as possible, similar to a smile but without 

vertical elevation of the corners of the mouth. REST was not 

included in the Toronto Neuroface dataset; however, REST 

was collected at the same time as OPEN and SPREAD, under 

identical conditions with the same individuals. 

 
1 SBR: https://github.com/D-X-Y/landmark-detection   

C. Facial landmark tracking 

Facial landmarks were tracked using 3 different algorithms: 

1) a baseline method, 2) the facial alignment network (FAN) 

[10], and 3) the supervision by registration (SBR) algorithm 

[5]. The latter 2 models were further finetuned.  

 

1) Baseline 

The baseline facial landmark detector is a well-known 

regression tree-based model [13]. This system is implemented 

as a pretrained model in the Dlib machine learning library 

[14], and hence we refer to it as DLIB. The model was 

originally trained on the 300W dataset. 

 

2) FAN 

FAN is a neural network-based facial landmark detector 

that uses stacked hourglass networks to create heatmaps for 

each of 68 facial landmarks [10]. The pretrained FAN model  

can be run in either a 2-dimensional (2D) or 3-dimensional 

(3D) landmark prediction configuration; here, we used the 2D 

variant. Our lab has successfully used FAN for facial 

landmark detection in either its standard or finetuned form 

(see below) on data from different clinical populations [9], 

[15]. 

 

3) SBR 

SBR is an approach to facial landmark detection that 

incorporates temporal consistency from video data into the 

landmark estimation process. It does this via a differentiable 

Lucas-Kanade (LK) module. The LK module refines a 

convolutional pose machine-based backbone [5] and 

penalizes not only landmark prediction error, but also 

predictions based on LK optical flow, thus providing a second 

training signal. Pretrained SBR model1 – trained on a mixture 

of static (e.g., 300W and video (e.g., 300VW) data – is 

available online.  

D. Finetuning neural networks 

Finetuning was performed to improve the accuracy of 

landmark estimation in individuals that might be 

underrepresented in the pretrained models, i.e., older adults 

and those with neurological impairments. It is acknowledged 

that facial landmark detection error tends to be higher in older 

adults and those with neurological impairments [8], and so 

finetuning is a way to overcome this problem. 

 

1) Finetuning FAN 

FAN finetuning has been successful in previous studies in 

order to improve landmark detection accuracy in 

clinical/older healthy populations. The process is described in 

detail elsewhere [9], [12]. Briefly, FAN was finetuned by 

freezing all weights in the model except for those of the last 

hourglass. These were left unfrozen and were updated using a 

leave-one-subject-out cross validation on data from the 

Toronto Neuroface Dataset. Finetuned FAN is referred to 

from hereon as FAN-FT.  
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2) Finetuning SBR 

SBR was finetuned to explore the impact of finetuning on a 

video-optimized model. We used a total of 910 images from 

9 individuals from the Neuroface dataset (3 from each of the 

3 Neuroface cohorts; see Table I) to finetune the pretrained 

SBR model. Individuals from each group were chosen based 

on who had the highest average facial asymmetry rating as 

judged by 2 SLPs. These individuals used for finetuning were 

held out from further analyses, to see how well the finetuning 

process generalized to the 27 unseen individuals. Finetuned 

SBR is referred to from hereon as SBR-FT. 

E. Measuring accuracy and smoothness 

1) Accuracy 

Accuracy of 20 predicted landmarks in the mouth region 

was evaluated to compare the models. We computed the 

normalized room mean square error (NRMSE), where the 

normalization factor is the diagonal length of the ground truth 

bounding box area.  

 

2) Smoothness 

Smooth landmark tracking is important for accurate 

estimation of position derivatives such as acceleration and 

jerk. We compared smoothness of the unfiltered position 

signals across all 5 models using 2 measures that have been 

recently proposed and/or evaluated with kinematic signals of 

differing lengths and complexities [16]. The first was the 

modified spectral arc length (SPARC) [16], which is 

estimated from the arc length of the Fourier spectrum of the 

movement. For brevity, we refer the reader to the full 

calculation of this metric in [16]. The second smoothness 

metric was the log dimensionless jerk (LDJ) [16], [17]. LDJ 

calculates the cumulative jerk, normalized by the peak 

velocity of a movement. For brevity, we refer the interested 

reader to [16], [17]for detailed calculation of this metric. We 

calculated smoothness measures using the first 5 seconds of 

each movement (other windows between 2 and 5 seconds 

were tested with comparable outcomes). For both smoothness 

measures, less-negative values indicate smoother tracking. 

For example, a value of -11 would indicate more smoothness 

than -12. 

F. Statistical analysis 

Statistical analyses were undertaken to compare the 

NRMSE, SPARC, and LDJ measures across the 5 landmark 

detection systems. Pairwise Wilcoxon paired-sample tests 

were conducted to evaluate differences between metrics for 

each pair of models, with correction for multiple comparisons 

via the Holm-Bonferroni method.  

III. RESULTS 

A. Accuracy 

Accuracy varied substantially across the 5 models, but the 

finetuned version of FAN and SBR typically had the lowest 

NRMSEs. SBR-FT had the lowest NRMSE for the ALS 

group, whereas FAN-FT had the lowest NRMSE for stroke 

and control groups. SBR-FT had significantly better 

(p<1.66e-3) accuracy than all models across all populations, 

except for the stroke group, in which FAN-FT had 

significantly better accuracy, and in the control group where 

FAN-FT had trending-towards significantly better accuracy 

(p<0.05). See Table II for a complete summary of NRMSE 

values.  

TABLE II.  AVERAGE NRMSE (%) FOR EACH POPULATION AND 

MODEL 

  DLIB FAN 
FAN-

FT 
SBR 

SBR-

FT 

A
L

S
 

NRMSE 

Mean ± SD 

2.84 ± 

1.19† 

2.18 ± 

0.39† 

1.67 ± 

0.30† 

1.83 ± 

0.45† 
1.59 ± 

0.36 

S
tr

. NRMSE 

Mean ± SD 

4.96 ± 

5.59† 

2.29 ± 

0.37† 
1.50 ± 

0.25† 

1.96 ± 

0.31† 

1.54 ± 

0.24 

H
C

 

NRMSE 
Mean ± SD 

2.37 ± 
0.78† 

2.21 ± 
0.35† 

1.41 ± 

0.26* 

1.89 ± 
0.36† 

1.44 ± 
0.35 

FT = “fine-tuned”. HC = “healthy control”. Str. = “Stroke”. Italicized values represent the lowest 

average NRMSE for each group. Bolded values reflect the lowest NRMSE for each group. †p < 

0.00166 (significant after multiple comparisons correction). *0.00166 < p < 0.05 (not significant after 

multiple comparisons correction). Statistical significance is determined by comparison to SBR-FT 

only. 

B. Smoothness 

The smoothness of facial landmarks tracked using SBR-FT 

was compared to other models via SPARC and LDJ. Figure 1 

depicts kinematic traces of 3 individuals, 1 from each cohort, 

demonstrating subjectively smoother landmark tracking by 

SBR-FT and SBR than other models. Objective measures of 

smoothness are summarized in Table III, and they agree with 

the subjective impressions. Overall, using SPARC, SBR-FT 

demonstrated the smoothest tracking in 4/9 population/task 

combinations, followed by FAN-FT (3/9). Overall, using 

LDJ, SBR-FT and SBR had the smoothest tracking in 8/9 and 

1/9 cases, respectively. Finetuning appears to have improved 

tracking in SBR, but not FAN: SBR-FT had smoother 

tracking than SBR in 9/9 (SPARC) and 8/9 cases (LDJ). 

Interestingly, FAN-FT had smoother tracking than FAN in 

6/9 using SPARC but only in 2/9 cases using LDJ. 

Smoothness comparisons trended towards significance in 

many cases, but only one of these survived the Bonferroni 

correction for multiple comparisons (significant p = 7.0e-4). 

In this sole exception, SBR-FT had significantly smoother 

tracking than FAN-FT by the LDJ metric for controls in the 

REST task. 

 

 
Figure 1.  Examples of kinematics extracted from videos of a single 

individual from each cohort performing the OPEN task, processed 

by each of the 5 facial landmark detection systems.  
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TABLE III.  SUMMARY OF SMOOTHNESS MEASURES 

 
Task DLIB FAN 

FAN-

FT 
SBR 

SBR-

FT 

S
P

A
R

C
 

A
L

S
 O -19.34* -13.40 -13.25 -13.56 -13.38 

R -20.57* -15.95 -15.72 -15.47 -14.99 

S -16.90 -20.35 -19.22 -20.46 -16.87 

S
tr

o
k

e O -14.55* -14.37* -15.91* -11.79* -11.17 

R -15.49 -16.78 -15.42 -16.65 -16.43 

S -15.42 -17.62 -18.28 -17.00 -15.71 

H
C

 

O -14.62* -11.43* -10.36* -10.68* -9.56 

R -24.69* -19.92 -18.88 -23.26 -21.26 

S -19.46 -19.22 -20.68 -20.70 -19.23 

L
D

J
 

A
L

S
 O -19.00* -18.55* -18.37* -17.43 -16.96 

R -19.71 -19.72 -20.08 -18.97 -18.69 

S -19.20 -20.12 -20.26* -19.29 -18.55 

S
tr

o
k

e O -19.43* -18.37 -18.90* -18.13* -17.93 

R -20.64* -20.92* -21.11* -20.01* -19.71 

S -20.03* -20.35 -20.42* -19.88 -19.34 

H
C

 

O -18.91* -18.14* -18.33* -17.48* -17.15 

R -17.01 -18.07* -18.80† -17.20 -16.82 

S -19.85 -20.31 -20.05 -19.83 -19.83 

 Total 

(SPARC) 
1/9 1/9 3/9 0/9 4/9 

Total 

(LDJ) 
0/9 0/9 0/9 1/9 8/9 

O = OPEN, R = REST, S = SPREAD. FT = “fine-tuned”. HC = “healthy control”. *p < 7.0e-4, *7.0e-

4 < p < 0.05 for comparison to SBR-FT only. Values in bold represent the best smoothness estimate 

for the given row. “Total” is the sum of cases where each model had the smoothest tracking. 

IV. DISCUSSION AND CONCLUSION 

In this study, we used finetuned SBR and FAN models to 

improve their performance detecting facial landmarks in older 

individuals with or without neurological impairments. We 

observed good accuracy and smoothness using the finetuned 

models, with FAN-FT was generally more accurate and SBR-

FT tending to track more smoothly. This has interesting 

implications for landmark tracking in clinical populations.  

 We observed that finetuning generally improved accuracy, 

although we noted some trade-offs between accuracy and 

smoothness. With SBR, no such trade-off seemed to exist: 

smoothness and accuracy were both improved via finetuning. 

In contrast, FAN-FT was not uniformly improved in terms of 

smoothness of tracking, despite substantially and consistently 

improved accuracy. This is likely a consequence of the 

different architectures used by FAN and SBR – the latter has 

a built-in module to account for interframe consistency [5] 

whereas the former does not. This could, on the one hand, 

impose restrictions on how accurate SBR can become with 

finetuning, with the tradeoff of improving interframe 

consistency.  

 Smoother landmark tracking has potential clinical value. 

Filtering is common practice for kinematic timeseries, but can 

impact the estimation of kinematics [6], so starting with a 

smoother signal that requires less filtering is favorable. 

Smoother landmark tracking could also enable detailed 

assessment of between-trial articulatory variability, which can 

distinguish people with ALS from healthy individuals [18]. 

 The present results illustrate the potential tradeoff between 

smoothness and accuracy from finetuning deep facial 

landmark tracking models. Smoother landmark estimation 

will improve the measurement of clinically-relevant 

kinematics, and thus may improve the detection and 

characterization of oromotor impairments.  
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