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Abstract— Recent advances in Deep Learning have led to
the development of supervised models to detect anomalies in
medical images such as pneumonia in chest X-rays. Automatic
detection of such anomalies can help clinicians with faster
decision making and treatment planning for patients. Nonethe-
less, supervised models require complete labeled training data
with all possible labels (i.e., positive and negative), which are
cumbersome and expensive to obtain. We propose an adver-
sarial learning-based semi-supervised algorithm for anomaly
detection, which requires training data only with a single class
(positive or negative). We applied our proposed Generative
Adversarial Network architecture to detect anomalies and score
pneumonia in chest X-rays and achieved statistically significant
improvements compared to previous state-of-the-art generative
network and one-class classifiers for anomaly detection.

I. INTRODUCTION

Pneumonia is a global cause of illness and mortality
amongst children under the age of 5 [l]. It has been
shown that early diagnosis and detection of pneumonia can
minimize the risk factors of the illness [2]. Computer-aided
diagnosis using medical imaging has been accelerated over
the past decade due to the breakthroughs in the field of
Machine Learning and the development of detection and
classification architectures that are based on Convolutional
Neural Networks (CNNSs) [3], [4], [5]. CNNs which are usu-
ally used in supervised frameworks, require large amounts
of labeled data to automate the task of anomaly detection,
such as detecting pneumonia in chest X-rays. Supervised
architectures require training data with complete labels for
both positive (diseased) and negative (healthy) cases. Nev-
ertheless, this requires accurate labeling of the data for both
positive and negative cases. The cumbersome annotation
effort and the diagnosis variation amongst expert radiologists
limit the performance of supervised models on new (unseen)
data. In contrast, solutions based on semi-supervised learning
only require partially labeled training data. Semi-supervised
learning significantly reduces the cost of creating training
data and thus, opens new opportunities for automated disease
detection using training data with only single class labels.

Although CNNs have been used extensively in diagnostic
medical imaging for disease detection, there is limited work
in this regard using semi-supervised architectures such as
Generative Adversarial Networks (GANSs). Specifically for
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pneumonia detection using supervised CNNs, Rajpurkar et
al. [6] used a 121-layer CNN with over 100,000 labeled
training data for detection of pneumonia and thirteen other
pathologies. They achieved an area under receiver operating
characteristic curve (AUC) of 0.76. The only GAN-based
model (AnoGAN) was proposed by Schlegl et al., for
anomaly detection of retina using OCT images [7].

In this study, we trained the AnoGAN model for detection
of pneumonia in X-ray images and proposed modifications
to the AnoGAN’s architecture to improve the detection of
pneumonia from healthy images. The idea behind anomaly
detection using GANs comes from the great ability of gen-
erative models in learning the image-space manifold where
training images lie on, and being able to generate never-
before-seen images that lie on the learned image-space [8].
Anomaly detection may be seen as only detecting abnormal-
ity in medical images such as a tumour or pneumonia. We
extend the definition of anomaly in medical images as the
deviation from the image-space manifold of training data.
In other words, if the training data only includes healthy
(negative) cases, the anomaly detected in the test cases is
indeed an abnormality such as tumour. On the other hand,
if the training data only includes unhealthy (positive) cases
(e.g., images with tumour or pneumonia), the "anomaly"
detected in the test cases are the deviation from unhealthy
cases meaning that the test case does not contain the disease
(i.e., healthy).

The choice for training data between positive or negative
cases depends on the availability of a larger amount of data
for one class of labels (e.g., positive) compared to the other
and the problem of generalizability in training GANs for
classification of images. For example, in prostate cancer,
radiologists can identify healthy cases with a very high
accuracy (over 92%) without a need for biopsy [9], which
is both painful and potentially harmful. In this scenario,
the proposed GAN-based model can be trained using only
negative (healthy) cases. On the other hand, when the radiol-
ogists classify prostate cancer patients with high likelihood of
cancer, it has been shown that almost all patients indeed have
cancer, once biopsied [10]. In this case, the proposed GAN-
based model can be trained using only positive (cancerous)
cases. In general, highly unbalanced datasets lead to poor
performance for supervised models. Thus, it is beneficial to
have a semi-supervised model that can be trained using only
one class labels with the largest data size. Semi-supervised
anomaly detection in medical images has not been explored
in domains where anomalies are difficult to detect even for
the expert radiologist. This is due to the difficulty of training
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models like GANs as they get deeper in order to extract more
features from images [11]. In this study, we proposed a novel
GAN architecture, based on AnoGAN, for the detection of
pneumonia in chest X-ray images where we improved the
performance of anomaly detection without losing the stability
in training the GAN. The advantage of using generative
models compared to using CNNs for detection of pneumonia
(anomalies) is the dependence of CNNs on labeled data
whereas our proposed generative model can be trained only
on one class (normal or pneumonia) of chest X-rays and learn
to detect anomalies without any label for the anomalous data.
We assessed the performance of the proposedm odel using
an anomaly score measure. We evaluated the current state-
of-the-art GAN based AnoGAN [7] and the state-of-the-art
one class classifier Deep SVDD [12] against our proposed
Inception-GAN and showed statistically significant improved
results in detection of pneumonia in chest X-rays.

II. GENERATIVE ADVERSARIAL LEARNING FOR
PNEUMONIA DETECTION

To identify positive from negative cases, we learn a model
representation only on positive (or negative) cases using
a GAN. This method trains a generative model (G) to
learn the representation of positive (or negative) cases and
a discriminator model (D) to identify real from generated
images simultaneously. In our experiments, we use X-ray
images to identify patients with pneumonia from healthy
ones.

A. Inception-GAN Model

The Generator (G) (Fig. 1) learns a distribution P, over
the input data z via mapping of input noise z, to 2D
images by function G(z). The trained Generator learns the
mapping G(z) : z — « from latent space representations
z to realistic, 2D, X-ray images. Our Generator model
follows DCGAN’s (AnoGAN and DCGAN follow the same
architecture) architecture [13] with two main modifications;
the use of Inception and Residual Blocks, as shown in Fig. 2.

The idea behind the Inception and residual architecture
[14] is being able to increase GAN’s ability to capture more
details from training image-space without losing spatial in-
formation after each convolution and pooling layer. Although
making the Generator deeper is theoretically a valid way to
capture more long-range details in the image, deep GANs
are unstable and hard to train [13], [11].

The Discriminator (D) is a 4-layer CNN that maps a
2D image to a scalar output that can be interpreted as
the probability of the given input being a real chest x-
ray sampled from training data or generated G(z) by the
Generator G.

During training, Generator G is trained to minimize the ac-
curacy of Discriminator D’s ability in distinguishing between
real and generated images while the Discriminator is trying
to maximize the probability of assigning real training images
the “real" and generated images from G, “fake" labels. The
Generator improves at generating more realistic images while

Discriminator gets better at correctly identifying between real
and generated images.

III. EXPERIMENTS

A. Data and Pre-processing

We used the publicly available chest X-ray images for
children [15] with two categories of Normal, 1,575 images,
and Pneumonia, 4,265 images. The images were in jpeg
format and varied in size, with pixel values in the [0, 1]
range. We resized all images to 128 x 128 pixels. Images
were normalized to have [-1, 1] range for the purpose of
tanh non-linearity activation in our GAN architecture. Given
that the positive (pneumonia) cases are much larger than
the negative cases (4,265 vs. 1,575), we chose to train the
proposed architecture with positive cases and then tested on
both positive and negative cases. We split pneumonia images
into 3,765 training and 500 test images. To keep the test set
balanced, we randomly chose 500 images of normal cases
and added them to our test data yielding a total of 3,875
training and 1,000 test images.

B. Competing Methods

Ruff et. al proposed a Deep One-class classification model
(Deep SVDD) [12] that outperformed shallow and deep
semi-supervised anomaly detection models at the time, in-
cluding AnoGAN. We compare our Inception-GAN against
these models as baselines.

C. Shallow Baselines

We followed the same implementation details of the shal-
low models as used in Ruff et. al’s Deep SVDD study. (i)
One-class SVM (OC-SVM) [16] finds a maximum margin
hyper-plane that best separates the mapped data from the
origin. (ii) Isolation Forest [17] (IF) isolates observations
by randomly selecting a feature and then randomly selecting
a split value between the maximum and minimum values of
the selected feature. We set the number of trees to t = 100
and the sub-sampling size to 256, as recommended in the
original work

D. Deep Baselines

Our Inception-GAN is compared with two deep ap-
proaches. (i) Ruff et. al’s Deep SVDD showed improved
accuracy of one class classification in a framework where one
class from MNIST [18] and CIFAR-10 [19] was kept as the
known image, and the rest of the classes were treated as the
anomaly. Deep SVDD learns a neural network transformation
from inputs into a hypersphere characterized by center ¢ and
radius R of minimum volume. The idea is that this allows
for the known (pneumonia) class of images to fall into the
hypersphere and the unknown (healthy) class to fall outside
of the hypersphere. (ii) AnoGAN is trained as the base GAN
benchmark for the task of pneumonia detection [13].
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Fig. 2. Inception and Residual Architecture

E. Evaluation

When Inception-GAN is trained, the Generator has learned
the mapping G(z) : z — x from latent space representation
z to realistic images (Chest x-ray with pneumonia). Given a
query image x in the test, we want to find a point z from the
latent space that, given the Generator’s output on that point,
G(z), is most similar to the query image z. The expected
behaviour after successful training is that the query image
z, if affected by pneumonia, will result in finding an image
G(z), which is visually closer to image x than if the query
image was a normal case.

To find latent variable z that generates the most similar
image G(z) to the query image x, we use backpropagation
with a predefined number of steps. The loss function defined
to find such z through backpropagation is comprised of two
components; residual loss and discrimination loss. Residual
loss (L) calculates the L1 distance between G(z) and the
query image z and enforces visual similarity between the
query image and generated image.

Li(z) =) |z —G(=) ()

Schlegl et al. [7] proposed a discrimination loss (Lp)
inspired by the concept of feature matching [20] that enforces

Generator Architecture

generated images G(z;) to follow the statistical characteris-
tics of the training images. Lp is defined below where the
output of an intermediate layer of the discriminator, f(.), is
used to represent the statistical characteristics of the input
image.

Lp(z) = |f(x) = f(G(z))] )

The overall loss used to backpropagate and find the best
z is a weighted sum of residual and discrimination loss;

£(21> = (1 — )\) X ﬂR(Zl) + A X ﬂD(Zl) 3)

The Anomaly score A(z) for the query image x is defined
as;
A(z) = (1= X) x R(z) + A x D(x) 4)

where R(x) and D(x) are respectively the residual and
discrimination loss of the best z; found through backprop-
agation. A\ adjusts the weighted sum of the overall loss and
anomaly score. We used A = (.2 to train our proposed
Inception-GAN and DCGAN [7]. Both architectures were
trained with the same initial conditions for performance
comparison.

IV. RESULTS

We computed anomaly score A(x) (eq. IF, OC-SVM and
Deep SVDD, trained on the pneumonia cohort, generated an
anomaly score based on their objectives (e.g, Deep SVDD
calculates the distance between data to center of hyper-
sphere as anomaly score). We compared the performance
of Inception-GAN to shallow and deep competing models
by calculating the area under the ROC curve (AUC). Table I
shows the AUC of each model, achieved on 1,000 test cases
where Inception-GAN (AUC of 89%) outperformed all com-
peting models with the previous state-of-the-art GAN-based
model, AnoGAN, achieving the second best performance for
detecting pneumonia from healthy X-rays. DeLong test [21]
was used to compare the AUC of the models by calculating
the p-value for significance difference. DeLong test showed
significant improvement of Inception-GAN over AnoGAN
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and Deep SVDD with a p = 0.01 and p = 2.4 x 1073
respectively.

OC-SVM IF AnoGAN  Deep SVDD  Inception-GAN
0.66 0.64 0.87 0.86 0.89

TABLE I
ONE-CLASS CLASSIFICATION AUCS FOR CLASSIFYING PNEUMONIA

AND NORMAL X-RAYS

V. CONCLUSION

In this paper, we proposed an adversarial learning model,
Inception-GAN, that improves on the state-of-the-art for
the task of pneumonia classification in chest X-ray images.
GANSs have the advantage over supervised methods by elimi-
nating the need for labeled data in order to locate and detect
anomalies as long as there are enough cases of one class
(healthy or diseased) for the model to learn from. Our study
had the limitation of having access to more abnormal data
than normal images. In order to achieve reliable results, we
reversed the learning strategy to learn "abnormal" cases in
training instead. The underlying concept, however, remains
the same. As future work, we will apply the proposed
architecture to cancer detection and localization with no need
for tumour location in training data.
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