
 

 

 

 

 

Abstract—With the development of calcium imaging, 

neuroscientists have been able to study neural activity with a 

higher spatial resolution. However, the real-time processing of 

calcium imaging is still a big challenge for future experiments 

and applications. Most neuroscientists have to process their 

imaging data offline due to the time-consuming of most existing 

calcium imaging analysis methods. We proposed a novel online 

neural signal processing framework for calcium imaging and 

established an Optical Brain-Computer Interface System 

(OBCIs) for decoding neural signals in real-time. We tested and 

evaluated this system by classifying the calcium signals obtained 

from the primary motor cortex of mice when the mice were 

performing a lever-pressing task. The performance of our online 

system could achieve above 80% in the average decoding 

accuracy. Our preliminary results show that the online neural 

processing framework could be applied to future closed-loop 

OBCIs studies. 

I. INTRODUCTION 

Brain-computer interface (BCI) aims to achieve direct 
information communication between the brain and external 
devices. It takes the physiological signals of the brain as the 
initial signal, extracts the useful information of the intention, 
identifies and controls the peripheral devices, and realizes the 
direct interaction between the brain and the external physical 
environment [1]. Establishing a BCI system that can achieve 
neural decoding in real-time is an important exploration for 
biomedical engineering and neuroscience, which can help us 
better understand the cognitive model of the brain and the 
mechanism of its processing information [2]. 

One of the most widely used BCI technologies is the 
electrophysiological recording which collects signals of 
neuron clusters through patch-clamp, neuropixels probe, and 
so on [3]. However, limited to the scale of the neural 
collecting, we can`t get hundreds or thousands of neuron 
changes at the same time in this way. Moreover, the collection 
has spatial sparseness and cannot record a specific cell or 
spatial organization information. With the development of 
functional optical imaging, these limitations are hopeful to be 
resolved. Calcium imaging technology is one of the popular 
functional optical imaging methods. Its main principle is to 
combine exogenous fluorescence signal with the physiological 
phenomenon and reflect the concentration of free calcium ions 
in cells through the change of fluorescent dye signal to 
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represent the functional state of cells [4]. The method allows 
simultaneous observation of multiple functionally or location-
related brain cells [5]. It is widely used to monitor the changes 
of calcium ions in related neuron groups in real-time, thus 
determining their functional activity. The technology allows 
scientists to witness the transmission of neural signals in time 
and space in a neural network [6].  

Two-photon microscopy imaging technology is a usual 
calcium imaging method combining confocal laser scanning 
microscope and two-photon excitation technology, which has 
been used in many studies. Zong et al. had developed a fast 
high-resolution, miniaturized two-photon microscope [7]. 
However, due to the low imaging speed, image distortion and 
thefixed head of living animals, more and more researchers 
prefer single-photon microscopy. As the device of single-
photon microscopy can be fixed on the head of animals, the 
animals move body freely and real-time dynamic imaging 
through wide-field microscopy can be captured. Barbera et al. 
proposed that neural clusters in the dorsal striatum encode 
locomotion-relevant information by analyzing the data 
collected by single-photon microscopy [8]. 

The primary motor cortex is an important region that 
controls body movement and converts the action instructions 
from the brain into neuron signals to encode movement [9]. 
Komiyama et al. researched the calcium imaging in layer 2/3 
and found that correlated activity in specific ensembles of 
functionally related neurons is a signature of learning-related 
circuit plasticity [10]. Capturing and analysing calcium 
imaging data from the primary motor cortex of mice will help 
us to realize neural decoding [11]. 

In this paper, we establish a real-time Optical Brain-
Computer Interface System (OBCIs) and  present a novel 
online neural signal decoding framework. We trained three 
mice to perform a lever-press task and collected calcium 
imaging data from layer 2/3 motor cortex by single-photon 
microscopy. The support vector machine (SVM) was used as 
online decoder and  our OBCIs could achieve a good 
performancewith average decoding accuracy exceeds 80 
percent. The implementation of the  optical brain-computer 
interface system based on single-photon calcium imaging 
provides a basis for further closed-loop OBCIs.  
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II. MATERIALS AND METHODS 

A.  Behavioral Task and Surgery 

We choose the three C57BL/6 wild-type mice weight 25g 

as our experiment subject. These mice were trained to press a 

lever for getting water rewards(Figure 1). Each trial begins 

with the start sound stimulus (Start Cue). Mice need to reach 

out their forelimbs and press the pressure sensor bar to meet 

the following criteria: (1) pressure exceeds the high-threshold 

we set; (2) pressure decline to the low threshold after reaching 

the high-threshold; (3) the change of pressure should be 

completed in schedule time we set. After the mice finish the 

task successfully in this trial, system offers sugar-water reward 

and sound stimulus (Success Cue). In other cases (timeout or 

pressure which is below the threshold), system will consider 

as a failure and send another sound stimulus (Fail Cue). Next 

trial need to wait for the refractory period time after the failure 

trial. In each session ,we trained for 30 minutes (consisted of 

about 200 trials). By sufficient training (8-10 sessions), the 

average successful rate of these mice reached 78.80%. After 

the behavioral training, we operated on the mice to prepare 

them for subsequent image acquisition. 

All surgical and experimental procedures conformed to the 
Guide for The Care and Use of Laboratory Animals (China 
Ministry of Health) and were approved by the Animal Care 
Committee of Zhejiang University, China. Mice were 
anesthetized with 35ml Avertin (1.25% solution, 0.015ml/g, 
i.p.) and we drilled a 1.5mm-diameter hole in the skull to 
provide the desired viral injection location. Next, 100nl virus 
(pAAV2/9-hSyn-GCaMP6f pMT311) was injectedinto the 
desired location through micro-infusion (Figure 2A). And 
then, we laid a pre-sanitized 1.5 mm-diameter glass coverslip 
(Thickness: 0.13mm) over the skull hole and glued it with 
Krazy glue. After recovery for 2 weeks,mice were installed 
baseplate of Miniscope for following calcium imaging 
acquisition. Figure 2B is an example calcium image from the 
primary motor cortex. 

B. System Design 

To analysis the calcium image from mice, we need to get 
the synchronous behavior data. The specific connection of the 
hardware device is shown in Figure 3. The system transmitted 
the acquired images back to the computer through the DAQ 
and acquired press change by the pressure sensor (Lever). We 
utilize serial communication to control the microcontroller to 
send the sound stimulation and feed water operation for 
training mice to complete the behavioral task.  

We used the UCLA MINISCOPE as our calcium imaging 
device and wrote the experimental software. It implements 
most functions: image acquisition, microscope parameters 
adjustment, ROI selecting, fluorescence tracing. Our OBCIs 
can acquire calcium data at 10-30 frames per second. In 
addition, Our OBCIs can make training datasets of neuron 
signals, training the SVM   model, and real-time decoding 
neural signals. During the online experiment, calcium imaging 
and behavioral event signals obtained from mice are stored 
simultaneously, which could be used for further offline 
analysis. All codes of the experimental system were 
implemented in C++. 

C. Online Decoding Method 

The workflow of our OBCIs system is shown in Figure 4A. 
The first step is to select the neuron for decoding. Before the 
decoding experiment, we need to preprocess the calcium 
signals from mice. After getting the calcium imaging, motion 
correction and image enhancement are performed to get a 
better view of neurons, and then we can manually select the 
ROI. The selection criteria for neurons were high  ratio-to -
noise and the shape of neurons is doughnut-shaped or 
macaron-shaped. Figure 5A shows the image after 
enhancement and Figure 5B shows the neurons selected in our 
experiment. The more neurons  used as the decoding input, the 
more movement-related information can be extracted. But we 
still need to consider the number of neurons since the 
excessive number will cause a burden on the real-time 
performance of system decoding. Through offline experiments, 
we found that ten neurons as the decoding input could reach 
better results with less input. 

Feature extraction is a critical part that will affect the 
following decoding results. Now the popular methods applied 
to offline process are the CNMF method and MIN1PIPE 
method [13 14]. But these methods cost so much time which 
dissatisfies with our system requirement of real-time 
processing. Here we chose the traditional method to calculate 

 
Figure 2. (A) The virus (GCaMP6f) injection (B) Calcium 

imaging from mice primary motor cortex 

 
Figure 1. A experiment paradigm of mice for real-time decoding 

task. 

 
Figure 3. The diagram of connection of hardware device in the OBCIs 

system. 
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the values of the region of interest. By comparing the values 
of ROIs calculated by the maximum, mean, and Gaussian 
fitting, we found that there is no significant difference in 
decoding and chose the average value of ROI as the neuron 
characteristic. The changes of ROIs and press of mice are 
shown in Figure 5C. 

Lee et al. had applied the linear discriminant analysis 
(LDA) to the real-time neural decoding problem [15]. 
However, LDA default assumes per class meets a normal 
distribution and is limited to the linearly separable problem. 
The Support Vector Machine (SVM) is the most widely used 
classification method. Though Lee et al. also applied it to the 
neural signal decoding framework, it is still a proposed 
framework tested by offline data and has not been widely 
applied to online experiments [16]. Here we applied the SVM 
method as our decoder by modifying its execution steps. To 
get rid of the linear constraint, we apply the Radial Basis 
Function (RBF) kernel as our SVM model, set the degree to 3. 
After the experimental test, the optimal parameters are finally 
selected. Using the time delay of neural information can often 
improve the decoding effect of neurons. Our decoder input at 
a time is a hundred features (ten neurons from ten frames of 
calcium image). We classified data as true when the pressure 
exceeded the threshold, and we identify the mice as 
performing the lever-pressing; Otherwise, the mice were 
classified as false and did not press thelever.  

Here we use two conditions as the decoder triggers: sound 
stimulation of success or failure and pressure exceeding the 
high-threshold. When the decoding condition is triggered, the 
system will uses the neuron information to decode the 
behavior state. The details of decoding experiment was 
displayed in Figure 4B. The calcium imaging time in mice 
collected in each experiment was about 15min because of the 
bleaching property of single-photon. Due to the limited 
imaging time, we divided the training and decoding according 
to the experimental time. Firstly, calcium imaging data of mice 
were collected for 50 seconds as the preprocessing data of the 
decoding task to select the location of neurons. We artificially 
select neurons according to the criterion of high correlation 

between neurons and behavior, as a mature automatic neuron 
recognition algorithm has not been introduced into the system 
yet. After 10 neurons were selected, 700 seconds of 
experiment data were collected as training data. While 
collecting data, our software synchronizes mice calcium 
imaging and behavioral information to generate online training 
data sets for the predictive model. We put the training data into 
the SVM and get the predicted model. After the model was 
loaded, we conducted the same experiment for 250 seconds to 
test and recorded the online prediction system. At the same 
time, the system also saves the data for subsequent offline 
decoding analysis. 

III. RESULT 

Three mice were trained for ourexperiment We collected 
calcium imaging signals from the M1 of these mice (4 sessions 
from each of them on different days) and decoded behavior 
state through our OBCIs system.  

The specific decoding results of the three mice are shown 
in Table I. We modified the SVM classification method for 
online classification decoding. the results from the offline 
process of neuron decoding are the same. The average 
accuracy of these online decoding is 81.04% and the highest 

 
Figure 5. Select ROIs by processing data from preacquisition. (A) 

show the image after movement correction and ∆F/F process. (B) 

show the ROI we select for real-time decoding. (C) are press value 

and the trace (mean value of ROIs) as input of SVM decoder. 

 

Figure 4. (A) The workflow of OBCIs in decoding experiment. (B) 

The experiment procedure of mice decoding including selecting 
ROIs, training model and decoding neural signals.  

TABLE I.  DECODING ACCURACY IN DIFFERENT SESSIONS 

Mice 
Decoding Accuracy of Mice 

Session1 Session2 Session3 Session4 

H12 80.77% 90.91% 88.14% 82.22% 

H18 79.41% 87.50% 83.02% 80.00% 

V14 71.64% 72.92% 86.81% 77.14% 
We apply the RBF kernel as our SVM model. According to the classification standard, OBCIs 
automatically set training data. We go on with the decoding experiment and test the decoding 
result. 

TABLE II.  DECODING TIME COST  IN DIFFERENT SESSIONS   

Time 

Cost (ms) 
Time of Decoder costing in different sessions 

Session1 Session2 Session3 Session4 

H12 2.576  2.272  2.864  2.590  

H18 2.484  2.354  1.528  1.360  

V14 1.312  2.076  2.414  1.934  
The time of decoder we calculated was the average value in each session (collected in different 

days). 
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can reach 90%. The decoding results from H18 is the best but 
the result from V14 is relatively poor. The possible reasons 
are the poor quality of calcium imaging and unobvious firing 

of neurons. Also, V14`s success rate of paradigm is lower 
than others and the increase of negative samples in the 
experimental data will lead to the imbalance of positive and 
negative samples, which will also affect the effectiveness of 
the SVM decoder. 

Session 1- 4 was tested and recorded in chronological 
order. Decodeing result in the first session is always not 
satisfactory. The decoding effect improved with the increase 
of training days and reached its best in Session 2/3. During 
these days, the mice were trained daily to complete the task. 
As the mice learning experimental paradigm, the neurons in 
the primary motor cortex always strengthen the mechanisms 
that encode movement. When the mice performed the task, the 
firing of neurons in the motor cortex was even more 
pronounced, which makes a great contribution to our online 
decoding. This will make contributions to the balance of 
positive and negative samples and improved decoder results.  

In Session 4, we found that the online decode accuracy of 
mice slightly may reduce. We think this is a usual 
phenomenon. Long-term single-photon irradiation has a 
photobleaching effect on the fluorescent protein. With the 
increase of time, the imaging quality of calcium imaging 
begins to decline may also be an important reason.  

From Table II, we could see that the time cost is so short 
(average is 2.417 ms) and all the cost time in sessions was less 
than 3ms. We collected calcium images at a rate of 20 frames 
per second whose time interval is much greater than the time 
decoding cost. It can be used to decode online neural signals, 
which provides the possibility for the closed-loop animal 
experiments of single-photon calcium.  

In addition, the poor decoding effect is also greatly related 
to the selection of neurons and the extraction of neural signals. 
Due to popular algorithms for automatic neuron recognition 
can`t apply to real-time processing, we select neurons 
artificially. There may be some errors in the neurons location 
and neurons unrelated to behavior may also be selected. We 
selected the 10 pixels area to calculate the mean value as the 
calcium signal emitted by neurons while neurons actually vary 
in shape and size. Applying mature signal extraction methods, 
such as neuronal background modeling, can obtain more pure 
neuronal signals and improve the decoding effect of neurons. 
So the next step for us is to improve the signal extraction 
method in the system. 

IV. CONCLUSION 

In this paper, we establish a real-time Optical Brain-
Computer Interface System that can achieve neural decoding 
from calcium imaging and  present a novel online neural 
signal decoding framework. OBCIs include many functions: 
image acquisition, neuron manual selection, feature 
extraction, SVM model training, and signal decoding. 
Through some experiments, we proved the feasibility of the 
real-time decoding framework and achieved high decoding 
accuracy. It provides the possibility for the subsequent closed-
loop experiments of the optical brain-computer interface. It 
can be said that calcium signal has great potential in future 

neural decoding.  

For future improvements, we`d like to use methods such as 
Kalman filtering to realize the prediction of the pressure value 
for subsequent experimental studies. Also, the neuron 
selection, signal extraction, and decode method can be our 
target to improve. A more efficient feature extraction method 
for neuron signal and choosing a better classifier such as the 
neural network can be applied to improve decoding accuracy. 

In this paper, we give some analyses of the decoding results. 

However, all the results are based on data from only three mice, 

which is very preliminary. Further research requires more 

experimental data. 
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