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Abstract— Sepsis is one of the pathological conditions with
the highest incidence in intensive care units. Sepsis-induced
cardiac and autonomic dysfunction are well-known effects,
among others, caused by a dysregulated host response to
infection. In this context, we investigate the role of complex
cardiovascular dynamics quantified through sample entropy
indices from the inter-beat interval, systolic and diastolic blood
pressure time series as well as the cross-entropy between
heartbeat and systolic blood pressure in patients with sepsis
in the first hour of intensive care when compared with non-
septic subjects. Results show a significant (p<0.05) reduction in
the probability of being septic for a unitary increase in entropy
for systolic and diastolic time series (odds equal to 0.038 and
0.264, respectively) when adjusting for confounding factors. A
significant (p<0.001) odds ratio (0.248) is observed also in cross-
entropy, showing a reduced probability of being septic for an
increase in heartbeat and systolic pressure asynchrony. The
inclusion of our measures of complexity also determines an
increase in the predictive ability (+0.03) of a logistic regression
model reaching an area under the receiving operating and
precision recall curves both equal to 0.95.

Clinical relevance The study demonstrates the ability of
information theory in catching a reduction of complex car-
diovascular dynamics from vital signs commonly recorded
in ICU. The considered complexity measures contribute to
characterize sepsis development by showing a general loss of
the interaction between heartbeat and pressure regulation. The
extracted measures also improve the ability to identify sepsis
in the first hour of intensive care.

I. INTRODUCTION

According to the third international consensus definitions
for sepsis and septic shock [1], sepsis is defined as a dysreg-
ulated host response to infection. Sepsis is considered one
of the major problems in intensive care units (ICU) where
its final stage, called septic shock, reports a mortality of
38.9% among 47% of patients that met the criteria according
to the third definition of sepsis [3], [1]. A sepsis incidence
of about 48.9 million of cases was observed in 2017 with
an average mortality of 19.7% [2]. To this extent, the
recognition of sepsis is of primary importance and it was also
highlighted in the Surviving Sepsis Campaign Guidelines [4]
as well as in [5], [6] which strengthen the need for timely
treatment and initiation of antibiotic therapies as starting
sepsis management procedures to be performed in the early
hours of sepsis development or recognition.
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Sepsis is known to strongly affect cardiovascular func-
tioning, leading to strong impairment of both myocardial
and autonomic functions. Recently, Wang [7] reviewed the
most common causes of sepsis induced cardiovascular dys-
function, describing it as a global dysfunction of the whole
heart which also induces autonomic depression of both
sympathetic and vagal branches of the autonomic control
system. Also an impairment of the link between heart activity
and blood pressure is evidenced. Previous studies identified
a reduction in heart rate variability (HRV) measures induced
by sepsis in adults [8], [9], [10] and particularly in non-linear
measures like the exponent of the detrended fluctuation anal-
ysis and entropy. Such measures indeed provide estimates of
the non-linear interactions between the heart activity and the
underlying mechanisms. However, to our knowledge, only
a few studies expanded this analysis to the blood pressure
time-series (BPTS) [11], [12], [13], which investigated the
association of blood pressure variability (BPV) with illness
severity and the ability of complexity measures from BPTS in
predicting sepsis, vasopressor independence at 24-h and 28-
day mortality. The analysis of complex interactions between
heart activity and blood pressure result to be less investigated
in septic subjects. The well-known key role of the autonomic
control system in regulating the cardiovascular activity re-
sulted indeed to be strongly impaired by sepsis. Therefore,
this study proposes the assessment of both entropy features
derived from pressure signals and cross-entropy measure
between heart activity and blood pressure to characterize and
predict sepsis in the ICU, when compared to other patients
in critical conditions. The role of these additional features
in identifying septic patients is assessed by focusing on the
improvement that their inclusion produced on a previously
developed sepsis identification pipeline [14] which showed
high performances using simple linear models among others.

II. METHODS
A. Cohort Selection

The study includes data publicly available on PhysioNet
[15] gathered from the MIMIC-III database [16], which
contains electronic health records (EHR) of patients entering
the ICU at the Beth Israel Deaconess Medical Center in
Boston, MA. A subset of the MIMIC-III database, i.e.
10,282 patients, is also matched with the corresponding
available recordings of vital signs continuously recorded at
the patients’ bedside.

In order to derive a population including both septic and
non-septic patients (also referred to as control in this study),
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we first aligned patients according to the admission in the
ICU and we extracted the first 1-hour recordings of each
patient’s stay. According to this procedure, we can mimic
in the most realistic way possible the condition of a patient
that enters the ICU and is put under the surveillance of the
proposed monitoring tool.

ICU data are known to be characterized by the presence
of different sources of noise, consequently, the following
inclusion criteria were applied to select the waveforms with
the highest quality:

• Presence of contemporaneous ECG (I,II,III or ’V’ leads)
and arterial blood pressure recordings (ABP).

• More than 50% of both signals should be available.
• Patients with 18<age<90.
Finally, waveforms were subjected to manual inspection

in order to remove those with more than 50% of additional
noise like signal saturations, electrodes disconnections and
motion. A total of 142 high quality waveforms were ex-
tracted, resulting in 71 septic and 71 control subjects.

Septic subjects were identified according to the third defi-
nition of sepsis [1], by defining septic patients as those with
a prescription of antibiotics, acquisition of body fluid culture,
and an increase in sequential organ failure assessment score
(SOFA) greater than two points [17]. We computed SOFA
score at the admission, identifying as septic patients whoever
met the defined criteria between -24 and +24 hours from the
admission in ICU.

B. Data Processing and Feature Engineering

Extracted waveforms were preprocessed and annotated in
order to extract fiducial points from both ECG and ABP
waveforms. R peaks were identified from ECG with an
internally developed algorithm and synchronized with the
extracted systolic, diastolic and onset fiducial points from the
ABP signal. The obtained time-series were processed in or-
der to remove ectopic beats and artifacts, and to extract HRV
features. A closed-loop point process modelling approach
was used in order to extract features representing the linear
interactions between the cardiovascular and autonomonic
nervous systems, according to our previous work [14].

1) Entropy Features: In addition to the previously intro-
duced set of features in both time and frequency domain,
we derived and investigated the role of non-linear features
from the extracted pressure and pulse arrival time series.
Specifically, we computed the sample entropy for both sys-
tolic, diastolic and pulse arrival time time-series according
to Richman et al. [18].

Briefly, considering a time series of N points {u(j) : 1 ≤
j ≤ N}, xm(i) = {u(i + k) : 0 ≤ k ≤ m − 1} are the N-
m+1 vectors of m points obtained for {i|1 ≤ i ≤ N −m+
1} whose reciprocal distance is defined as d[x(i), x(j)] =
max{|u(i+k)−u(j+k)| : 0 ≤ k ≤ m−1}. In this context,
the probability that two sequences will match for m points,
Bm(r) can be defined starting from Bm

i (r) = Bi/(N−m+
1), with Bi the number of vectors xm(j) within r of xm(i),
where 1 ≤ j ≤ N −m, j 6= i and consequently, Bm(r) =∑N−m

i=1 Bm
i (r)/(N −m). Similarly, the probability that two

sequences will match for m+1 points, Am(r), is derived from
Am

i (r) = Ai/(N −m + 1) with Ai the number of vectors
xm+1(j) within r of xm+1(i), where 1 ≤ j ≤ N −m, j 6= i,
thus obtaining Am(r) as Am(r) =

∑N−m
i=1 Am

i (r)/(N−m).
Richman et al. estimate the sample entropy as

SampEn(m, r,N) = −ln(Am(r)/Bm(r)) (1)

m = 2 and r = 0.2 were considered for the analysis.
Cross-SampEn was then extracted by simply measuring the
distance between the vectors xm(j) and xm+1(j) obtained
from the first series u with respect to vectors ym(j) and
ym+1(j) obtained from a second series {v(j) : 1 ≤ j ≤ N},
ym(i) = {v(i + k) : 0 ≤ k ≤ m − 1}, thus defining the
distance between x(i) and y(i) as d[x(i), y(j)] = max{|u(i+
k)− v(j + k)| : 0 ≤ k ≤ m− 1}.

Inspired by the hypothesis of a strong effect of sepsis on
the coupling between heart rate and arterial blood pressure,
we evaluated the cross sample entropy between RR interval
series and systolic pressure series (XEn RR-SAP) to assess
changes in the non-linear interaction between these two
systems. The considered time-series were centralized and
normalized before the estimation of cross sample entropy.

C. Statistical Analysis and Classification

Statistical difference between the two groups was assessed,
for each entropy feature and for extracted time indices,
through a generalized linear model correcting for confound-
ings (age, gender, undergoing treatment of vasoactive agent
and sedative, undergoing mechanical ventilation, hyperten-
sion and diabetes).

Finally, we tested the role of entropy features from blood
pressure and pulse arrival time series as well as RR-SAP
cross-entropy in predicting sepsis by including them in the
whole set of features whose performances were already
assessed in our previous study [14]. The improvement was
evaluated with a logistic regression model which was trained
with a set of 80% observations and tested on the remaining
20%. A stratified hold-out partition was performed.

III. RESULTS

A. Statistical analysis

Table I shows median and interquartile ranges of the con-
sidered features for both septic and control population. It is
worth mentioning the higher median values of AVSAP, SD-
SAP and SDDAP for septic subjects (133.3mmHg, 9.2mmHg
and 5.59mmHg) with respect to control ones (125.6mmHg,
7.5mmHg, 4.7mmHg) as well as the sensibly lower median
values of the following measures of entropy SAP SampEn
(S: 0.167, C: 0.262) and DAP SampEn (S: 0.281, C: 0.493)
and XEn RR-SAP (S: 0.817, C: 1.048). The comparison of
some generic features describing the patients’ cardiovascular
state and the non-linear features extracted between septic
and control populations is presented in Table II. Average
RR interval (AVNN) and its variability (SDNN) did not show
statistically significant difference, however, average systolic
pressure (AVSAP) and SDSAP show significant (respectively,
p<0.05 and p<0.01) changes with respect to the control
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Feature Distributions
Feature Sepsis Control

AVNN [ms] 702.5 744.1
618.8-804.6 633.4-875.0

SDNN [ms] 35.0 30.9
18.7-61.8 16.9-61.5

AVSAP [mmHg] 133.3 125.6
112.6-144.87 114.17-135.69

SDSAP [mmHg] 9.2 7.5
6.9-13.3 5.7-9.9

AVDAP [mmHg] 70.7 70.9
60.7-81.2 63.0-78.8

SDDAP [mmHg] 5.6 4.7
4.3-7.8 3.7-6.2

AVPAT [s] 0.285 0.273
0.263-0.316 0.235-0.291

SDPAT [s] 0.017 0.012
0.011-0.031 0.008-0.019

RR SampEn 1.062 1.199
0.878-1.514 0.856-1.815

XEn RR-SAP 0.817 1.048
0.516-1.174 0.858-1.678

SAP SampEn 0.167 0.262
0.12-0.279 0.177-0.422

DAP SampEn 0.281 0.493
0.177-0.579 0.283-0.832

PAT SampEn 0.812 0.889
0.708-1.066 0.745-1.096

TABLE I
MEDIAN AND INTERQUARTILE RANGES FOR SEPISIS AND CONTROL.

population, with respectively 1.2 and 4.1 times increase in
probability of being septic when an increase of 10 mmHg
is observed. Similarly, diastolic series variability shows a
significant (p<0.05) difference with odds>1 whereas AVDAP
does not. Pulse arrival time linear features AVPAT and its
variability SDPAT result to be significantly (p<0.001 and
p<0.01, respectively) different between septic and control
subjects, with odds respectively equal to 4.1 and 1.6 for
corresponding increases of 0.1 and 0.01 seconds.

Sample entropy measures computed on pressure time
series (SAP SampEn and DAP SampEn) result statistically
significant (p<0.01 and p<0.05) when comparing the two
populations, showing both odds<1 for unitary increase as
well as cross-sample entropy from RR and SAP series
(XEn RR-SAP) which shows odds=0.248 (p<0.001).

Fig.1 shows ECG and ABP traces from two distinct
subjects: a septic (upper) and a control (lower) subject
with XEn RR-SS equal to 0.1698 and 7.272, respectively.
The high overall blood pressure variability, please note the
difference in the two scales, and the stronger synchronization
between RR and SAP time series can be appreciated in the
septic traces with respect to the control ones.

B. Identification Model Results

Results obtained for sepsis identification showed an in-
crease in discriminating ability when comparing the new
updated model, including the information of the pressure
related entropy and cross-entropy measures, with the best
performing logistic regression model previously developed.
Specifically, the new model achieves an area under receiving

Sepsis-Control
Feature Coefficient pValue Odds (Increase)

AVNN [ms] -0.001±0.001 0.4880 0.914 (+100)
SDNN [ms] 0.009±0.006 0.1562 1.092 (+10)

AVSAP [mmHg] 0.020±0.010 0.0422* 1.221 (+10)
SDSAP [mmHg] 0.142±0.052 0.0066† 4.14 (+10)
AVDAP [mmHg] 0.009±0.015 0.5344 1.096 (+10)
SDDAP [mmHg] 0.162±0.078 0.0364* 5.069 (+10)

AVPAT [s] 14.1±4.27 0.0009‡ 4.122 (+0.1)
SDPAT [s] 46.7±16.7 0.0054† 1.595 (+0.01)

RR SampEn 0.137±0.367 0.7094 1.146 (+1)
XEn RR-SAP -1.394±0.404 0.0006‡ 0.248 (+1)
SAP SampEn -3.28±1.20 0.0063† 0.038 (+1)
DAP SampEn -1.33±0.555 0.0165* 0.264 (+1)
PAT SampEn -1.34±0.748 0.0735 0.262 (+1)

TABLE II
ESTIMATED COEFFICIENTS (± STANDARD ERROR), P-VALUES

(*P<0.05, †P<0.01, ‡P<0.001) AND ODDS RATIOS FOR EACH OF THE

EXTRACTED FEATURES.

operating curve (AUROC=0.95) and an area under precision
recall curve (AUPRC=0.95) significantly higher than the
values obtained with the previous model (AUROC=0.91 and
AUPRC=0.90, respectively).

IV. DISCUSSIONS

A. Statistical Analysis

Statistical results indicate that pressure signals are strongly
informative about the presence of sepsis. Indeed, this study
confirms the importance of pressure time series and pres-
sure variability, showing that an increase in blood pressure
variability is associated with sepsis. Similar results were
also found by previous studies [12], [13] that associated
a higher pressure variability with illness severity. Of note,
septic subjects overall show higher heart rate (lower AVNN,
not significant) and, differently from clinical expectations [1],
a significantly higher average systolic pressure, possibly due
to the differences in sepsis evolution between patients in the
early stage of ICU admission. A significantly higher average
pulse arrival time is also observed, suggesting a general state
of vasodilation, a condition known to be present in sepsis
[19]. The significant differences in systolic, diastolic and
pulse arrival time variabilities further suggest an impaired
autonomic regulation that does not properly reflect onto
vessels regulation. This is in line with recent literature
finding [20] showing a reduced reactive hyperaemia and peak
hyperaemic blood flow.

The relevance of our results is further motivated by the
entropy features which, differently from previous studies
show that RR interval entropy is not significantly influenced
in septic patients when compared with other ill patients in
the ICU, whereas systolic and diastolic entropy are signif-
icantly reduced in sepsis. This possibly indicates a loss of
complex non-linear interactions between the cardiovascular
and the autonomic nervous systems that may be attributed to
the hypothesized impairment in vasculature regulation. This
observation is further emphasized by the observed significant
loss of cross-entropy in septic patients between RR and
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Fig. 1. RR and SAP traces for septic (top) and control (bottom) subjects
with respectively low (0.1698) and high (7.272) values of Cross-SampEn.

SAP, which points at a higher synchronization between the
two series, thus suggesting that blood pressure is reflecting
more the heart activity with a loss in the non-linear control
of the autonomic nervous system of blood pressure. It has
to be mentioned that, despite the analysis were adjusted
also for the presence of mechanical ventilation, patients’
respiration, highly influenced by sepsis [22], might play a key
role influencing both RR and SAP, indeed previous studies
already assessed a reduction in cross-entropy between RR
and respiration [18], and this effect might be reflected on
blood pressure as well [21].

Finally, the obtained increase in discriminating ability
of the developed machine learning model strengthens the
importance of features coming from the complex domain
both for blood pressure time-series (their high predictive
power was indeed previously observed in [11]), and for
describing the complex interaction between heart and blood
pressure as well as their potential clinical role in ICU.

V. CONCLUSIONS
The study highlights the importance of monitoring com-

plex cardiovascular dynamics in the ICU, demonstrating how
differences in these indices provide relevant insights into the
underlying pathophysiology of septic patients when com-
pared with other ICU patients. We also show that complex
indices derived by blood pressure dynamics are able to boost
up performances of machine learning models in order to
identify sepsis as early as possible after patients’ admission.
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