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Abstract—The recent COVID-19 pandemic has further high-
lighted the need for improving tele-rehabilitation systems. One
of the common methods is to use wearable sensors for monitor-
ing patients and intelligent algorithms for accurate and objective
assessments. An important part of this work is to develop an
efficient evaluation algorithm that provides a high-precision
activity recognition rate. In this paper, we have investigated
sixteen state-of-the-art time-series deep learning algorithms with
four different architectures: eight convolutional neural networks
configurations, six recurrent neural networks, a combination of
the two and finally a wavelet-based neural network. Addition-
ally, data from different sensors’ combinations and placements
as well as different pre-processing algorithms were explored
to determine the optimal configuration for achieving the best
performance. Our results show that the XceptionTime CNN
architecture is the best performing algorithm with normalised
data. Moreover, we found out that sensor placement is the most
important attribute to improve the accuracy of the system,
applying the algorithm on data from sensors placed on the
waist achieved a maximum of 42% accuracy while the sensors
placed on the hand achieved 84%. Consequently, compared to
current results on the same dataset for different classification
categories, this approach improved the existing state of the art
accuracy from 79% to 84%, and from 80% to 90% respectively.

Index Terms—Deep learning, Tele-rehabilitation, Wearable
sensors, Time-series, Stroke.

I. INTRODUCTION

Stroke can be a consequence of cerebrovascular disease,
which is one of the leading causes of death in the world. It
accounts for roughly 75% of deaths from cerebrovascular
diseases [1]. If not fatal, stroke can lead to temporary
or permanent paralysis [2], limiting the ability to perform
Activities of Daily Living (ADL) and thus impacting on the
patient’s quality of life [3].

To recover their lost skills, patients are required to under-
take rehabilitation and an important part of it is performed
in an outpatient environment [4]. At this stage therapists

prescribe the necessary rehabilitation exercises based on their
assessment of the patients [5]. Some of the research evidence,
however shows that functional improvements observed in the
hospital do not necessarily translate to the home setting [6].

To tackle these issues technology-based systems have been
utilised and wearable sensor-enabled technologies constitute
one common solution. This is due to their high portability
combined with their low costs [7]. Moreover, these devices
can assist therapists in monitoring their patients and coupled
with intelligent algorithms, they can provide an objective
assessment to track their patients’ progress [8], [9].

In order to implement an effective assessment technology,
the system needs to accurately detect the exercises being
executed, which relate in most cases to ADL. To do so, many
approaches have been utilised ranging from a conventional
signal processing modelling approach that seeks a mathe-
matical relationship between an activity and the different
modelling parameters, to machine learning algorithms, that
extract pertinent features to allow the model to differentiate
and recognise the different activities, to more recently deep
learning algorithms that can automatically extract features
and learn to distinguish between the activities [10], [11].

Deep learning achieved significant results in the com-
puter vision domain [12]–[15] and has started to outperform
traditional machine learning techniques in Human Activity
Recognition (HAR) . In addition, it is possible to achieve
state-of-the-art accuracy without the need to re-train the
entire model using transfer learning. Transfer learning is the
process of training the model on a source dataset, and then
transferring the learned features to be used on a new target
dataset [16].

In this paper, sixteen different state of the art time-series
deep learning models are evaluated on a complex ADL
benchmark dataset, that includes eighteen different activities
(e.g. walking, jogging, climbing stairs, sitting, standing,
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typing, brushing teeth, eating soup, eating chips, eating
pasta, drinking from a cup, eating a sandwich, kicking a
soccer ball, playing catch with a tennis ball, dribbling a bas-
ketball, writing, clapping, and folding clothes). The sixteen
classification models belong to four distinct architectures/ (1)
Convolutional Neural Networks (CNN), (2) Recurrent Neural
Networks (RNN), (3) a combination of the two and (4) a
wavelet-based neural network with the objective to determine
which configuration gives a higher accuracy on HAR. In
addition, data collected from different sensors and mounted
on different body locations are pre-processed using three
different algorithms, which are also analysed and compared
to find out the best source for distinguishing the different
activities.

Results obtained in this paper show an increase of 10% in
accuracy from current state of the art classifications. Indeed,
data from a single sensor could identify up to 90% of
18 different complex ADLs using time-series deep learning
algorithms.

The remainder of the paper is organised as follows: in
section II, the utilised dataset is presented with an explanation
of the different preparation steps for the data used in the clas-
sification algorithms. After that in section III, experimental
results achieved for the best performance are presented in
the first sub-section III-A, the used models are evaluated
with different data sources in sub-section III-B, and finally
in section III-C fine tuning and post-processing the models
are also elaborated. Section IV concludes the paper.

II. DATASET DESCRIPTION AND PREPARATION

In this paper the WISDM Smartphone and Smartwatch Ac-
tivity and Biometrics Dataset [17] was utilised. This dataset
was actualised in late 2019. It includes diverse and complex
ADL and this makes it a good candidate for evaluating the
algorithms. It consists of 18 activities (Table I) performed
by 51 different participants for three minutes. Two Inertial
measurement unit (IMU) sensors (triaxial accelerometer and
triaxial gyroscope) from a smartwatch and a smartphone were
utilised respectively to collect the data. The smartwatch was
mounted on the participant’s dominant hand, and the smart-
phone is placed on the waist, with each using a frequency
of 20 Hz. Hierarchically, the dataset is divided into two
folders, phone and watch, each folder is sub-divided into two
sub-folders accelerometer and gyroscope, each containing 51
files corresponding to the different participants IDs. Each file
contains the following information: subject-ID, activity-code
(character between ’A’ and ’S’ no ’N’ that identifies the activ-
ity), timestamp, x, y, z sensors’ readings (i.e. accelerometer
or gyroscope).
Table I shows the different activities involved and their labels.

The data obtained from the different sensors were investi-
gated to determine the most suitable way for recognising the
activities i.e: accelerometer from the phone, gyroscope from
the phone, accelerometer from the watch, gyroscope from
the watch, phone (accelerometer + gyroscope) and watch
(accelerometer + gyroscope). The accelerometer-gyroscope

TABLE I: Dataset activities and their labels.

Activity orientation Activities
Non-hand-oriented
activities

Walking (A), Jogging (B), Stairs (C), Sitting (D),
Standing (E), Kicking (M)

Hand-oriented activi-
ties (Eating)

Eating soup (H), Eating chips (I), Eating pasta
(J), Drinking (K), Eating sandwich (L)

Hand-oriented activi-
ties (General)

Typing (F) , Playing catch (O) , Dribbling (P),
Writing (Q), Clapping (R), Brushing teeth (G) ,
Folding clothes (S)

were merged using the timestamp provided for each reading,
and the number of readings for each sensor is provided in
Table II.

TABLE II: Total number of readings for each sensor

Sensor Number of readings
Accelerometer phone 4,804,403

Gyroscope phone 3,608,635
Accelerometer watch 3,777,046

Gyroscope watch 3,440,342
Phone (Gyro + acc) 2,909,149
Watch (Gyro + acc) 3,370,861

The dataset is segmented into multiple data windows of 10
s corresponding to the 200 readings, every window of data
is labeled with the most recurrent activity in that window.

III. EXPERIMENTAL RESULTS

The selection of the model is performed in three stages,
1) Sixteen different state-of-the art time series algorithms
are tested in order to choose the best classifier. 2) The
chosen model is investigated further by using three different
pre-processing algorithms (i.e. feeding raw data, feeding
standardised data, and feeding normalised data) on the six
sensors’ data sources from the phone and watch (i.e. Gy-
roscope, accelerometer and combination of both for each
device). 3) The data is further tweaked and the model is
then fine-tuned to improve the final performance.

A. First stage: model selection

In order to find the best performing algorithm, sixteen state
of the art deep learning classifiers are employed. The dataset
is divided into 80% for training and 20% for testing (not used
for training). The Tsai [18] library from fastai is utilised in
Python, which is a deep learning library for time-series model
based on Fastai [19].
Different architecture are used namely CNN, RNN, a com-
bination of the two (CNN-RNN) and Wavelet-based neural
network, as previously identified.
A brief description of each algorithm is given as follows:

1) RNN models: RNNs are a class of neural networks that
allow previous outputs to be used as inputs while having
hidden states. In this paper, six RNNs with different Long
Short Time Memory (LSTM) are used for HAR, and the main
difference between each of them is the number of layers (1,
2, 3) as well as using the bidirectional or non bidirectional
architectures.
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TABLE III: Accuracies of the different models on the different sensors’ raw data.

Model Acc watch Acc phone Gyro watch Gyro phone watch phone
XceptionTime 0.776013 0.275341 0.707558 0.4087 0.697626 0.299416

ResNet 0.752714 0.224783 0.707558 0.353006 0.704748 0.294947
InceptionTime 0.751655 0.264684 0.683721 0.389305 0.709792 0.275696

ResCNN 0.748478 0.244114 0.680523 0.327237 0.709496 0.27879
LSTM FCN 0.73471 0.225774 0.681105 0.349958 0.707122 0.291165

OmniScaleCNN 0.730209 0.260719 0.680814 0.346911 0.657665 0.263445
LSTMFCN 0.726238 0.245353 0.681105 0.349958 0.697626 0.246476

FCN 0.721472 0.263445 0.677616 0.348573 0.711573 0.289447
xresnet1d34 0.709293 0.253779 0.67907 0.373234 0.680119 0.279821

mWDN 0.67964 0.238662 0.587209 0.313106 0.605242 0.275696
LSTM3 0.666667 0.203965 0.624419 0.365475 0.669436 0.258508

LSTM3bi 0.661371 0.203965 0.612791 0.353006 0.65905 0.237882
LSTM2 0.657665 0.199009 0.604942 0.343585 0.623739 0.232726

LSTM2bi 0.656606 0.17596 0.603198 0.337213 0.619881 0.217944
LSTM1 0.605242 0.174226 0.573837 0.326129 0.60178 0.202475

LSTM1bi 0.587503 0.163569 0.556395 0.321142 0.588131 0.196631

2) 1D-CNN based models: Seven different CNN models
are explored:

• Fully Connected Neural networks (FCN): Inspired by
the work introduced by Wang et al [20], it consists
of CNNs that do not contain any local pooling layers,
meaning that the length of a time series is kept un-
changed throughout the layers of convolutions.

• XceptionTime: A novel time series architecture designed
by Elahe Rahimian et.al in [21] by the integration
of depth-wise separable convolutions, adaptive average
pooling, and a novel non-linear normalisation technique.

• InceptionTime: An ensemble of deep Convolutional
Neural Network models, inspired by the Inception-v4
architecture for computer vision introduced by Fawaz
et.al [22].

• ResNet: Convolutional layers that stack residual blocks
on top of each other to form a network, very popular in
the computer vision domain introduced by Kaiming He
in [23].

• ResCNN: Applies the residual block to overcome the
vanishing gradient problem. It is additionally enhanced
by using the k-fold ensemble method.

• XResNet: A modification of the traditional ResNet
architecture suggested by Tong He in [24].

• OmniscaleCNN: A CNN architecture whose specificity
is to concatenate the outputs of several convolution
filters whose length is one plus all the prime numbers
between two and a quarter of the time series length
proposed by Tang et al [25].

lesl
3) RNN-CNN models: A combination of CNN and RNN

architectures was investigated, it consists of LSTM layers
and convolution layers for feature extraction with different
pooling layers.

4) Wavelet-based neural network: This model consists
of the Multilevel Wavelet Decomposition Network for In-
terpretable Time Series Analysis (mWDN) Algorithm in-
troduced by Wang et. al in [26]. The particularity of this
model is that it preserves the advantage of multilevel discrete
wavelet decomposition in frequency learning while enabling

the fine-tuning of all parameters under a deep neural network
framework.

5) Results: Table III shows the results of training each
classifier for 100 epochs (training them for more epochs did
not improve accuracy) and taking the maximum validation
accuracy obtained for each one. The XceptionTime gave
the best overall results for most of the data sensors and is
therefore the one that has been selected to carry out further
analysis and fine tuning to improve the performance.

B. Second stage: sensor and pre-processing algorithm selec-
tion

As explained in section III-A5, the XceptionTime model
outperformed the other algorithms and is therefore selected
to be used as our activity recognition algorithm. A 5-fold
cross-validation test is used to assess the accuracy of the
model in recognising the different activities. 80% of the data
are used to train the model, and the rest are used to determine
the accuracy of the model. We want our model to generalise
well with new participants, so the windows of data are not
shuffled, but in each one of the five iterations 10 participants
(which corresponds to 20% of the data) among the 51 are
chosen to be the validation data. In addition, the accuracy
between models are compared based on each sensor’s data
(i.e. accelerometer from the phone only, gyroscope from
the phone only and accelerometer and gyroscope combined
from the phone and same thing for the sensors in the
watch) in order to find out which sensor’s data are most
accurate for the activity recognition. Moreover, three different
pre-processing methods are employed named: (1) feeding
raw data from the sensors to the classification model, (2)
feeding normalised data and (3) feeding standardised data.
Normalisation typically means re-scaling the values into a
range of [0, 1] while standardisation means re-scaling data
to have a mean of 0 and a standard deviation of 1.
The accuracy was computed using the formula:

Accuracy = (TP + TN)/(TP + TN + FP + FN) ∗ 100

Where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.
For all the models, in order to select the best Learning Rate
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Fig. 1: Loss Vs learning rate.

(LR) to use we followed the approach taken by Leslie N.
Smith [27], where the loss is computed and plotted using
different LRs and the latter is chosen to be in the interval
between the point were the loss is minimal and a factor of
10 smaller. An example is presented in Figure 1, where the
LR is chosen to be in the interval [2e-3,2e-2].

1) Phone data: The data collected from the phone are the
first to be presented, accuracy results from the accelerometer,
gyroscope and the combination of both are compared using
the three different pre-processing algorithms discussed ear-
lier. Table IV shows the accuracy rates obtained for each
configuration. The accuracy rates obtained are very low,

TABLE IV: Accuracy rates of the different phone sensors’
configurations

Raw Standardised Normalised
Accelerometer 29% 35% 30%

Gyroscope 36% 42% 41%
Combination 37% 33% 28%

with a maximum of 42% obtained when using standardised
gyroscope data.
Accelerometer data as well as the combination of both give
very poor accuracy rates. Since the number of models is
high (i.e. three data processing methods and three different
sensors’ sources which makes a total of nine different con-
figurations) presenting further results of all of them could be
cumbersome. Subsequently, only the one with the maximum
accuracy (i.e Standardised gyroscope data) is presented in
Figure 2.

Based on the phone sensors’ data, the algorithm has a
high difficulty differentiating between the activities, with a
maximum accuracy of 42% reached when using the gy-
roscope and the standardised data. We can also see from
the associated confusion matrix (classes names are in Table
I), that the hand-associated activities (especially the eating
activities) are the ones being mostly confused, the reason is
that the phone is placed on the waist and therefore the sensors
cannot accurately recognise the hand activity.

2) Watch data: Similarly to the procedure followed in
section III-B1 we find the appropriate LR range to use,
and train the model using 100 epochs. The accuracy rates

Fig. 2: Confusion matrix of the standardised data from the
phone.

obtained for the different configurations are given in Table
V.

TABLE V: Accuracy rates of the different watch sensors’
configurations

Raw Standardised Normalised
Accelerometer 82% 81% 69%

Gyroscope 74% 73% 74%
Combination 72% 84% 82%

We see that the accuracy improves significantly from
the phone data, the standardised data from the combined
accelerometer-gyroscope is the configuration that provides
the highest accuracy 84%. We investigate the model per-
formance further, using the associated confusion matrix in
Figure 3.

The data from the watch sensors are more successful
in differentiating between the activities by achieving near
perfect classifications for non-hand oriented activities and
hand oriented activities (general). It still confuses eating
related activities especially eating sandwich (L) eating chips
(I) and eating pasta (J), which is not surprising. Additionally,
combining the data from the accelerometer and gyroscope
improves relatively the classification and the normalisation
pre-processing gives a better accuracy.

C. Third step: dataset tweaking and discussion on the results

In this section we try to increase the accuracy even further
by tweaking the features using the information we identified
in the previous sections. The model used is the combined
standardised watch data from section III-B2. Two approaches
are listed as follows:

• The two activities with the highest miss-classifications
(i.e. eating a sandwich and eating pasta) are merged
together into one class (we can call it eating sandwich
or pasta ). Taking into account that adding two classes
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Fig. 3: Confusion matrix of the normalised data from the
watch.

together will increase the size of the data in that new
class, and thus creates a bias toward that activity. There-
fore, the two merged activities were randomly split in
two halves and one half of the first activity is merged
with one half of the other, which creates at the end a
new class that has approximately the same number of
data as other classes.

• All the activities related to eating activities are merged
together which are a total of five (eating: soup chips
pasta sandwich and drinking) into one class only (eat-
ing). This is done by following the same procedure
described previously to avoid an unbiased dataset (in-
cluding the phone data did not improve accuracy).

The accuracy has increased significantly from our previous
best performing model with an accuracy of 86% for our first
merged model and 90% for the second one. The confusion
matrices for these two models are shown in Figure 4.

The confusion matrices show that the models are more
successful in differentiating between the different activities,
most of the miss-classifications in the first merged model
Figure 4a still lie in the eating activities, while in the second
model (Figure 4b) the highest miss-classification is between
the eating activities and sitting.

The results obtained in this paper show that deep learning
provides state-of-the-art results in the sensor based HAR. We
have tested numerous time-series models that gave outstand-
ing accuracies on a complex dataset that contains eighteen
different activities and this using only a single sensor. We
are able to significantly increase the performance obtained in
[28] that used some classical deep learning approaches and
[29] that used KNN, Random forest and SVM on a tweaked
dataset (similar to our tweaking done in section III-C) (Table
VI). This demonstrates that time-series deep learning models
are good candidates to be employed for the tele-rehabilitation
processing algorithms.

Moreover, sensor placement is a highly important attribute
for the success of the model, our results show that there is
a huge difference of 40% between the sensor placed on the
waist and the one placed on the hand. The reason for that
is the sensor placed on the hand is more sensitive to some
activities than the other sensors for this specific dataset.

TABLE VI: Comparison between best accuracies obtained in
different papers

Original dataset Tweaked (merging eating activities)
[28] 79% NA
[29] NA 80%

This paper 84% 90%

IV. CONCLUSION AND FUTURE WORK

In this paper we investigated the performance of numerous
state-of-the-art time-series deep learning algorithms on a
complex HAR dataset, as well as the effect of the sensors
utilised, their placement and the pre-processing algorithms
employed on the data. Results showed that the different algo-
rithms gave relatively close accuracy rates with the Xception-
time outperforming the others slightly. Additionally, sensor
placement plays a significant role in accurately recognising
the activities, some placements are more sensitive to specific
activities than others. In fact, applying the algorithm on data
from sensors placed in the waist achieves a maximum of 42%
accuracy, while the sensors placed on the hand achieved 84%
accuracy. Moreover merging the eating activities increased
the accuracy from 84% to 90% further on the validation data
using a five-fold cross-validation test. As future work, we aim
to increase the accuracy rates obtained further by encoding
the time-series data into images and feeding it to popular
computer vision classifiers.
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